X 1215

Cartridge Disk Drive

Unit

Vol.IV: Diagrams

PHILIPS Data
${ }^{+}=$Systems

1-1 GENERAL

The key to logic refers to the logic circuits on the printed circuit boards (figure 4-1). The voltage levels used in the CDD are +5 V for a logic "1" and OV for a logic "O".
Each printed circuit board has a 64 pin female connector on which pin 2 is used for +5 V and pins 4, 14, 26, 40, 52 and 64 are used for logical earth. The logic used in the CDD is generally called TTL (Transistor - Transistor Logic) consisting of integrated circuits. These integrated circuits are contained in "dual in line" packages with 14 pin or 16 pin connections (figure 4-1A). Discrete component circuits containing separate resistors, capacitors, transistors or diodes are also sometimes used.
Figure 4-1B shows the organisation of component location on the printed circuit boards.

A

B

Figure 4-1

1-2 LOGIC SYMBOLS

Function name :	A00	
Code number	:	9330 500 71XX0
Supplier t-jpe :	FJH131; 7400; 9NOO	
Drawing symbol :		

Description :
The AOO comprises four, independent NAND-gates, each provided with two inputs and a totem pole output stage.
Logic function:
$Z=\overline{I O . I 1}$

Function name	$:$	AO3	
Code number	$:$	9331935	$30 X X 0$
Supplier type	$:$	74132	

Drawing symbol :


```
Lescription :
```

The A03 comprises four, independent NAND-gates, each provided with two inputs Schmitt trigger and a totem pole output stage.

Logic function :
$Z=\overline{I_{n} \cdot I_{1}}$

Function name	:	A04
Code number	$:$	933050031 XXO
Supplier type	$:$	FJH121 ; 7410; 9N10
Drawing symbol	:	

OV

Description :
The AO4 comprises three, independent NAND-gates, each provided with three inputs and a totem pole output stage.

Logic function :
$z=\overline{I_{0} \cdot I_{1} \cdot I_{2}}$

Function name	$:$	A06
Code number	$:$	9330499 91XXO
Supplier type	$:$	FJH111; 7420; 9N20
Drawing symbol	:	

Description :

The A06 comprises two independent NAND-gates, each provided with four inputs and a totem pole output stage.

Logic function :
$Z=\overline{I_{0} \cdot I_{1} \cdot I_{2} \cdot I_{3}}$

Function name	$:$	A08
Code number	$:$	$933049951 \times X 0$
Supplier type	:	FJH101; 7430; 9N30
Drawing symbol	:	

Description :

The A08 comprises one NAND-gate, with eight inputs and a totem pole output stage.

Logic function :
$Z=\overline{I_{0} \cdot I_{1} \cdot I_{2} \cdot I_{3} \cdot I_{4} \cdot I_{5} \cdot I_{6} \cdot I_{7}}$

Function name	:	A11
Code number	$:$	9331719 20XXO
Supplier type	:	$7438 ; 9 N 38$
Drawing symbol $:$		

Description :
Tne A11 comprises four, independent NAND-gates, each provided with two inputs and an open collector output stage.

Logic function :
$Z=\overline{I_{0} \cdot I_{1}}$

Function name : A12
Code number : 512200005831
Supplier type : 74HOO ; 9HOO
Drawing symbol :

Description :
The A12 comprises four, independent, high speed NAND-gates, each provided with two inputs and a totem pole output stage.

Logic function :
$Z=\overline{I_{0} \cdot I_{1}}$

Function name	$:$	ALUOO
Code number	$:$	$933064950 X X O$
Supplier type	:	FJH211; 7483; 9383
Drawing symbol	:	

$\stackrel{0}{6}$
 OV

Description :
The ALUOO comprises a full adder for two 4-bit binary numbers
(AO through A3 and BO through B3) plus a carry input CI. Four outputs
(Z0 through Z3) are provided for each bit and the carry output CO
is obtained from the last bit.

Function table:

The function table is presented in two parts for simplicity:

- Input conditions at AO, A1, B0, B1 and CI determine the outputs Z0 and Z1 together with the internal carry C1 obtained from this addition.
- Input conditions at A2, A3, B2, B3 and the internal carry C1 detexmine the outputs Z2, Z3 and CO.

Input				Output					
				$\mathrm{CI}=0$		C1	$\mathrm{CI}=1$	-	
AO A2	B0 B2	A1 A3	B1 B3	80	$21 / 23$	$\mathrm{Cl}^{\mathrm{CO}}$	Z0 $\mathrm{Z2}$	21 Z3	$\mathrm{Cl}^{\mathrm{CO}}$
0	0	0	0	0	0	0	1	0	0
1	0	0	0	1	0	0	0	1	0
0	1	0	0	1	0	0	0	1	0
1	1	0	0	0	1	0	1	1	0
0	0	1	0	0	1	0	1	1	0
1	0	1	0	1	1	0	0	0	1
0	1	1	0	1	1	0	0	0	1
1	1	1	0	0	0	1	1	0	1
0	0	0	1	0	1	0	1	1	0
1	0	0	1	1	1	0	0	0	1
0	1	0	1	1	1	0	0	0	1
1	1	0	1	0	0	1	1	0	1
0	0	1	1	0	0	1	1	0	1
1	0	1	1	1	0	1	0	1	1
0	1	1	1	1	0	1	0	1	1
1	1	1	1	0	1	1	1	1	1

Function name : ALUO4
Code number :
Supplier type : FJH2O1; 7482; 9382
Drawing symbol :

5V

Description :
The ALUO4 comprises a full adder for two 2-bit binary numbers
(AO through A1 and BO through B1) plus a carry input CI.
Two outputs (Z0 and Z1) are provided for each bit and the carry output $C O$ is obtained from the last bit.

Function table :

INPUT				OUTPUT					
AO	B0	A1	B1	$\begin{aligned} & \text { When } \\ & \mathrm{CI}=0 \end{aligned}$			$\begin{aligned} & \text { When } \\ & C I=1 \end{aligned}$		
				Z0	Z1	CO	Z0	Z1	CO
0	0	0	0	0	0	0	1	0	0
1	0	0	0	1	0	0	0	1	0
0	1	0	0	1	0	0	0	1	0
1	1	0	0	0	1	0	1	1	0
0	0	1	0	0	1	0	1	1	0
1	0	1	0.	1	1	0	0	0	1
0	1	1	0	1	1	0	0	0	1
1	1	1	0	0	0	1	1	0	1
0	0	0	1	0	1	0	1	1	0
1	0	0	1	1	1	0	0	0	1
0	1	0	1	1	1	0	0	0	1
1	1	0	1	0	0	1	1	0	1
0	0	1	1	0	0	1	1	0	1
1	0	1	1	1	0	1	0	1	1
0	1	1	1	1	0	1	0	1	1
1	1	1	1	0	1	1	1	1	1

Function name : AMP01
Code number : 933135350112
Supplier type : TBA281
Drawing symbol :

Description :

The AMP01 comprises a monolithic integrated voltage regulator circuit consisting of a temperature compensated reference amplifier, error amplifier, power series feed transistor and a current limiter. The AMP01 is used in power supplies.
The pins have the following functions:

1) Current sense
2) V-out*
3) Inverting input

3 Non-inverting input
4. V-ref
5) Negative supply voltage
7) V-collector

8) Positive supply voltage
9 Frequency compensation
10) Current limit.
*
without external transistor I load max. $=50 \mathrm{~mA}$.

Function name : AMPO2
Code number : 933137000112
Supplier type : TBA221; 72741N
Drawing symbol :

Description :

The TBA221 comprises a high gain d.c. differential amplifier, with a voltage gain of 100.000 . The TBA221 does not require external frequency compensation components, has input null adjustment facilities and short circuit protection.

OV

Description :
The AOROO comprises four two input AND-gates, which are followed by an OR-gate and an inverter. The inverter has a totem pole output stage. The AOROO has a possibility for expanding via inputs X and \bar{X}

Logic function :
$Z=\overline{I_{0} \cdot I_{1}+I_{2} \cdot I_{3}+I_{4} \cdot I_{5}+I_{6} \cdot I_{7}+X \cdot \bar{X}}$
\(\left.\begin{array}{lll}Function name \& : \& CNTOO

Code number \& : \& 9330887 00XXO\end{array}\right]\)| Fupplier type | : |
| :--- | :--- |
| FJB93197; 74197; 93197 | |

Drawing symbol :

OV

Description :

The presettable decade and binary counter CNTOO comprises a modulo 2 binary counter and a modulo 8 binary counter. By connecting cutput QO (pin 5) to trigger input T2 (pin 6) the circuit can be used as a modulo 16 counter. The modulo 16 counter can be increased by one upon the negative-going edge of the trigger input $\overline{T 1}$, provided that the inputs $\overline{\mathrm{PE}}$ and $\overline{\mathrm{R}}$ are '1'. The whole counter can be reset by making input $\bar{R} \mathbf{N}^{\prime}$ 。
The information at the inputs PO, P1, P2 and P3 is stored and placed on the outputs QO, Q1, Q2 and Q3 as soon as the input $\overline{\mathrm{PE}}$ becomes '0', provided that the input \bar{R} is 11^{\prime}. The modulo 2 counter can be increased by one upon the negative-going edge of trigger input $\overline{T 1}$, provided that the inputs $\overline{P E}$ and \bar{R} are '1'. The modulo 8 counter can be increased by one upon the negative-going edge of the trigger input $\overline{T 2}$, provided that the inputs $\overline{\mathrm{PE}}$ and $\overline{\mathrm{R}}$ are '1'.

Timing diagram :

Note: QO is not connected to $\overline{T 2}$

Function name	:	CNTO1
Code number	$:$	$933162370 \times X O$
Supplier type	:	FJB93191; 74191; 93191

Description :
The CNTO1 is a 4-bit binary up/down counter. The outputs Q0 thr. Q3 may be preset to any state by placing the desired data on the inputs PO thr. P3 and an '0' on input PE. The outputs QO thr. Q3 can be changed on the positive-going edge of the input T if the enable input TE is ' O^{\prime}. A '11 at input TE inhibits counting. Level changes at the enable input $\overline{T E}$ should be made only when input T is '1'. The direction of the count is determined by the state of the down/up input DU. When the input is ' 0 ', the counter counts up and when the input is '1', it counts down. The output TC is '1' when the count on the outputs Q0 thr. Q3 is 0 (counting down) or 15 (counting up). The logic function is $T C=\overline{Q 0} \cdot \overline{Q 1} \cdot \overline{Q 2} \cdot \overline{Q 3} \cdot D U+Q 0 \cdot Q 1 \cdot Q 2 \cdot Q 3 . \overline{D U}$. The output TCC is ' 0 ' when the count on the outputs QO thr. Q3 is 0 (counting down) or 15 (counting up) and only during the time that the inputs T and $\overline{T E}$ are 'O'. The counter can be reset by placing all zero's on the inputs PO thr. P 3 and an ' O^{\prime} on input $\overline{\mathrm{PE}}$.

Timing diagram :

Function name	$:$	D00
Code number	$:$	$933050470 \times X O$
Supplier type	$:$	FJJ131; 7474; 9N74

Drawing symbol :

Description :

The DOO comprises two, independent edge-triggered D-type flip-flops with direct SET and RESET inputs. On the positive-going edge of the trigger input T, the information on the D-input will be stored and placed on the outputs Q and Q.

Function table:

D	T	Q	\bar{Q}
0	F	0	1
1	F	1	0

Note: both inputs $\overline{\mathrm{S}}$ and $\overline{\mathrm{R}}$ must be 111

Function name : D01
Code number : 9330648 10XXO
Supplier type : FJJ181; 7475; 9375
Drawing symbol :

Description :
The D01 comprises four D-type flip-flops. Each of the two flip-flops has a common trigger input. During the time the trigger input is high, changes on the data input will be transferred to the outputs. When the trigger input is low, the outputs are unaffected by the input.

Function table :

D	T	Q	\bar{Q}
0	1	0	1
1	1	1	0

Code number : 9331329 60XX0
Supplier type :
Drawing symbol :

EOROO

FJH271; 7486; 9N86 :

OV

Description :
The EOROO comprises four,independent exclusive OR-gates, each provided with two inputs and a totem pole output stage.

Logic function :
$Z=I_{0} \cdot \overline{I_{1}}+\overline{I_{0}} \cdot I_{1}$
Function table :

I_{n}	I_{1}	Z
0	0	0
0	1	1
1	0	1
1	1	0

Description :
The JKOO comprises two, independent, negative-edge triggered JK flip-flops with direct SET and RESET inputs. If the J-input is '11' and the K-input '0', the flip-flop will be set on the negative-going edge of input T. If the J-input is ' 0^{\prime} ' and the K-input '1', the flip-flop will_be reset. When both J and K inputs are '1', the outputs Q and \bar{Q} will change on every negative-going edge of the trigger input T (the flip-flop is toggling). The flip-flop can be set or reset directly by placing a ${ }^{\prime} 0^{\prime}$ on input \bar{S} or R respectively. These inputs override all other inputs.

Function table :

J	K	T	$0 L D$		NEWW	
0	0	Z	0	1	0	\bar{Q}
0	1	Z	0	1	0	1
		$\boxed{1}$	1	0	0	1
1	0	2	0	1	1	0
			1	0	1	0
1	1		0	1	1	0
		2	1	0	0	1

Note: the inputs $\overline{\mathrm{S}}$ and $\overline{\mathrm{R}}$ must be 11 '

Function name
Code number Supplier type : FJH241; 7404; 9NO4 Drawing symbol :
 OV

Description :
The NOO comprises six, independent inverters with a totem pole output stage.

Function table :

I	Z
0	1
1	0

Function name	$:$	$0 R 00$
Code number	$:$	933080621 XXO
Supplier type	$:$	FJH221; 7402; 9NO2
Drawing symbol	:	

7405

Description :

The OROO comprises four ,independent NOR-gates, each provided with two inputs and a totem pole output stage.

Logic function :
$Z=\overline{I_{0}+I_{1}}$

Function name	:	0500	
Code number	:	9331667 30XXO	
Supplier type	:	74123	
Drawing symbol	:		

Description :
The OSOO comprises two re-triggerable, monostable multivibrators. By triggering the one-shot before the output pulse is terminated, the output pulse will be extended. The input \bar{R} permits any output pulse to be terminated at a time independent of the timing components R and C.

Input I_{0} is a negative-edge triggered input and will trigger the one-shot when it becomes ' ' ', as long as input \mathbb{I}_{1} is '1'. Input I_{1} is a positive-edge triggered input and will trigger the one-shot when it becomes '1', as long as input μ_{0} is ' ${ }^{\prime}$ '. The duration T (see timing diagram) of the output Q and \bar{Q} depends on the RC network which is connected externally to the integrated circuit. When input $\overline{\mathrm{R}}$ becomes ' 0 ' it will terminate the output pulses.

Function table:

Inputs		Outputs	
I_{0}	I_{1}		
1	$*$	0	1
$*$	0	0	1
0	5	Ω	\bar{q}
\bar{z}	1	Ω	w

* = don't care

Timing diagram :

