GENERAL

Each basic chassis contains its own power supply (Table 4-1). The power supply with the $M 4$ chassis provides regulated +5 V at $43 \mathrm{amps},+16 \mathrm{~V}$ at 9 amps , and -5 V at 2 amps, as well as unregulated +18 and -18 volts at 2 amps each. The M5 chassis contains two power supplies : one identical to the M4 supply, and a second supply that differs only in some component positions. The main power and logic signals of the basic supply are shown in the block diagram, Figure 5-1. The mechanical configuration and parts locations are shown in Figures 5-6 through 5-9.

5.2 INPUTS

The power supply operates on voltages of $100 \mathrm{~V}, 115 \mathrm{~V}, 220 \mathrm{~V}$, or $240 \mathrm{~V}, \pm 10 \%$, single phase, at either $50 \mathrm{~Hz}(\pm 2 \mathrm{~Hz})$ or $60 \mathrm{~Hz}(\pm 3 \mathrm{~Hz})$. The power supply is adapted to the selected input voltage by wiring the input-side of the mains transformer, T201, as shown in Figure 5-2. The transformer input connections and jumpers are made by individual plugs at the rear of the chassis (Figure 5-7). The $A C$ input is filtered, fused, and then switched by means of a remotecontrol circuit. The remote-control circuit (Figure 5-3, sheet 1) is located on printed-circuit card P1.
5.3 A battery connection is provided on the power supply chassis. The purpose of an external battery supply is to maintain the +16 V and part of the +5 V supplies during a mains power failure. The battery connector wiring is shown on Figure 5-3, sheet 1 .

240 V Operation	220 V Operation	115 V Operation	$\begin{gathered} 100 \mathrm{~V} \\ \text { Operation } \end{gathered}$

Point 9 of the transformer is a shield between primary and secondary windings.
The shield must be connected to the ground.
The fan is connected on the first 115 V winding ($1-3$) so that it is always supplied with 115 V .

Figure 5-2 Mains Input Wiring
5.4 OUTPUTS

The output voltages, and maximum currents from this supply are

- $+16 \mathrm{~V}, 9 \mathrm{~A}, \quad \pm 3 \%$ (due to $\pm 10 \%$ mains and load variation)
- $\quad+5 \mathrm{~V}, 43 \mathrm{~A}, \mathrm{~m} \quad \pm 2 \%$ (due to $\pm 10 \%$ mains and load variation) $\pm 2 \%$ for
- $-5 \mathrm{~V}, 2 \mathrm{~A}$, ripple and noise, $p-p$ from 0 to 20 MHz .
- $+18 \mathrm{~V}, 2 \mathrm{~A}$,
- $-18 \mathrm{~V}, 2 \mathrm{~A}$,
$-10 \%,+70 \%$ (non regulated)
- +lOV, IA,
$\pm 3 \%$ (due to $\pm 10 \%$ mains and load variations)

The +16 V supply is used by the memory (inhibit amplifiers). About 9 amps are required for 32 k words of memory; the 16 V , 9 -amps supplies 64 k words of memory with two modules working at the same time, with interleaving. The -5 V supply is used by memory (about 1.5 amps) and by the interface drivers for the big disc control unit (about 1 amp). The unregulated +18 V and -18 V supplies are used by data-communication and teletype control units; the 18 volts are converted to 12 or 6 volts by regulators on the control-unit cards. The +5 V supply is used by the CPU logic.

5.5 LOGIC SIGNALS

The RSLN (Reset Line) and PWFN (Power Failure) signals are used for power on/off sequences and automatic restart. The full logic description is given in paragraph 2.45. The power supply controls both signals with the following timing :

The power-off sequence is shown for switching off or for a power failure greater than 10 ms . Shorter line failures will not cause the "off" sequence. Once PWFN goes active (low), the sequence must continue to activate RSLN.

5.6 REAL TIME CLOCK

The Real Time Clock (RTC) is a lus pulse every 20 ms which is sent to the RTCF
flip-flop (program status bit 12) to be used as an internal interrupt. The RTC pulse is generated by pulse-shaping the mains frequency. The RTC pulse is then sent via the control-panel key switch (positions ONRTC and LOCK) to the CPU logic RTCF flip-flop (Figure 2-8 PP). The operation of the General Flip-Flop (GF) RTCF is described in Section II. The RTCF interrupt is also shown on the Interrupts and Breaks diagram in Section 1.

5.7 FUSES

The power supply contains one fuse in the mains input (F206) and additional fuses for the supplied voltages. The fuses for the supplied voltages (at the rectifier/filter outputs) are to protect the rectifiers and transformer in case of regulator failure; the regulators themselves are electronically protected. The power supply fuses are listed in the following table :

Fuse	Purpose	Schematic	Location
F206	Mains input, slow operating : 4 amp for $220 \mathrm{~V} / 240 \mathrm{~V}$ inputs 8 amp for $100 \mathrm{~V} / 115 \mathrm{~V}$ inputs	sheel 1	
F101	0.1 amp, mains detector	sheet 1	
F201	$20 \mathrm{amp},+5 \mathrm{~V}$ regulator	sheet 2	
F202	$10 \mathrm{amp},+16 \mathrm{~V}$ regulator	sheet 3	
F203	2 amp, auxillary 15 V supply for the power-supply circuits.	sheet 2	
F204	$3.15 \mathrm{amp},-18 \mathrm{~V}$ and -5 V supplies	sheet 4	
F205	$3.15 \mathrm{amp},+18 \mathrm{~V}$ supply	sheet 4	

5.8 RECTIFIER CIRCUITS

The inputs to all of the DC supplies use center-tapped, full-wave rectifiers. The AC voltage is supplied by five center-tapped secondary windings of transformer TR2. The rectifier circuits are shown on the schematic diagram (Figure 5-3) with their appropriate supplies. The +5 V and +16 V regulators take the positive voltage from the transformer center taps, which allows the anodes of the high-current diodes to be mounted in heat sinks at zero volts
(ground). The +18 V and -18 V supplies use a full-wave bridge package, but each supply is using only two diodes of the bridge together with the center-tapped transformer winding. The -5 V regulator takes its input voltage from the unregulated -18 V supply.

5.9 +5V REGULATOR

$5.10 \quad$ Voltage Regulation. The $+5 \mathrm{~V}, 43$-amp power is supplied by a switching type regulator (Figure 5-3, Sheet 2). High efficiency is obtained because of the regulator transistors (Q201, 202, and 203) being always on or off. The regulator transistors are controlled by a voltage detector and a voltage corrector. The switching frequency is controlled by an independent clock circuit common to the +5 and +16 volt supplies, and is thereby not load-dependent.
The +5 V regulator controls the mean voltage V_{M} (following diagram) by varying the switch-on time in direct relation to the required correction. The Δt is reduced, while the switching frequency is held constant, in order to reduce the mean output voltage.

$$
\frac{V_{M} t}{V_{\max }}=\frac{\Delta t}{T}
$$

5.11 The switching regulation operates at a frequency ($20 \mathrm{KHz}, \pm 5 \%$) determined by the type 555 clock circuit, ICI. The clock provides a timing inpu to voltage corrector IC2. IC2 is a type 555 pulse-width modulator (PWM) which generates a pulse to switch regulator $Q 201 / 2 / 3$ on and off. Regulation is provided by the variable pulse width from IC2. When Q201/2/3 switches on, current flows through inductor L203 to the load, increasing linearly, and charges the output capacitors. When Q201/2/3 switches off, L203 current starts to decrease, and diodes CR201/2 are forward biased; the current now flows through CR201/2, decreasing linearly.
5.12 The +5 V output sense voltage is compared to a reference voltage by error amplifier IC4. (Since the type UA723 reference voltage is about 7 volts, the +5 V supply ($<7 \mathrm{~V}$) adjusts the reference level.) As the sense voltage increases, the output current at IC4, pin 9 increases and the Q 8 collector voltage to PWM IC2 decreases. The reduced threshold voltage at pin 5 of IC2 decreases the pulse width output from the voltage corrector. The narrower pulse to Q201/2/3 (via transformer T1) results in less "on time" for the regulator transistors, and reduces the final output voltage.
5.13 The l:l transformer Tl is used to couple the high-current supply with sensitive, low-current control circuits. This allows higher-voltage regulation control with resultant higher efficiency and higher-speed operation for the voltage regulation. The coupling transformer is supplied with 3.5 volts at high current during power-on time by starting-supply IC5, Q12. Once the +5 V supply is up, Tl is supplied by the +5 volts via diode CRI; the emitter of Q12 is back-biased and the starting supply is held off. The starting supply is inhibited (along with the clock) by an overcurrent cutoff.
5.14 Overvoltage Crowbar. An overvoltage detection circuit (crowbar) for the +5 V supply is made up of a threshold detector (Q101) and thyristor (CR101). If the supply output voltage increases beyond the nominal value, between 6 and 7 volts, Q101 switches on and the thyristor fires to shortcircuit the supply.
5.15 Overcurrent Detection. Current detection on this 43-amp supply is performed by passing the +5 V line through the center of a variable $-\mu$ ferrite core (L204) which has a sensing coil wound about it. Direct current through the +5 V line produces a magnetic field (H) which causes a magnetic flux in the core. The flux density (B) and the properties of the core material determine the permeability (u) of the core; thus, any change in the current through the core (I) changes the field strength (H) which changes the permeability (u).

5.16 A type 555 square-wave generator (IC3, Q7, Q9) produces a voltage square wave which passes through the $L 204$ coil (from pin A to B) to the overcurrent detector (IC6). The inductance (L) of the coil retards the leading edge of the squarewave to produce a current sawtooth output to the detector (following diagram). Since the inductance of the coil (L) is approximately $L=u N^{2}$ (where N is the number of turns, a constant), a change in u causes a change in the sensing current through the coil (ΔI). The height of the sawtooth is thus directly dependant on the coil's L, as follows : $E=L \Delta I / \Delta T$, with ΔT and E constants from the squarewave generator. Excess current therefore increases the amplitude of the sawtooth sufficiently to trigger the threshold detector at the IC6 input.

5.17 When overcurrent detector IC6 is triggered, it produces an inhibit signal which blocks the Tl starting supply and the clock. With the clock (ICI) stopped, the +5 V and +16 V supplies are blocked. The starting supply to $T 1$ must be inhibited separately because it derives its power from the unregulated part of the +5 V supply which is not stopped when the ICl clock stops.
5.18 When the +5 volts is off, the squarewave output is off and transistor Q9 is on. Since the $L 204$ coil is short for $D C$, the threshold detector detects a constant high and adds to the shut off condition. Negative spikes (caused by L) are removed from the Q9 squarewave output by zener diodes CR14 and CR15. The resistors shown as part of $L 204$ are selected during manufacture to produce the same u for all units. The relationship from current (I) to squarewave voltage is
$\mathrm{I} \rightarrow \mathrm{H} \rightarrow \mathrm{u} \rightarrow \mathrm{L} \rightarrow \mathrm{\Delta I} \rightarrow \Delta \mathrm{E}$
$\uparrow \uparrow \downarrow \downarrow \uparrow \uparrow$

$5.19+16 \mathrm{~V}$ REGULATOR

5.20 Voltage Regulation. The +16V,9-amp power is supplied by a switching type regulator (Figure 5-3, Sheet 3). High efficiency is obtained because regulator transistor Q204 is always on or off. The regulator transistor is controlled by a voltage detector and a voltage corrector. The switching frequency is controlled by an independent clock circuit common to the +5 and +16 volt supplies, and is thereby not load-dependent. The +16 V regulator controls the mean valtage V_{M} (following diagram) by varying the switch-on time in direct relation to the required correction. The Δt is reduced, while the switching frequency is held constant, in order to reduce the mean output voltage.

$$
\frac{V_{M} t}{V_{\max }}=\frac{\Delta t t}{T}
$$

5.21 The switching regulation operates at a frequency (20 KHz) determined by the type 555 clock circuit, ICl . The clock provides a timing input to voltage corrector IC9. IC9 is a type 555 pulse-width modulator (PWM) which generates a pulse to switch regulator Q204 on and off. Regulation is provided by the variable pulse width from IC2. When Q204 switches on, current flows through inductor L202 to the load, increasing linearly, and charges the output capacitors. When Q204 switches off, L202 current starts to decrease, and diode CR203 is forward biased; the current now flows through CR203, decreasing linearly.
5.22 The +16 V output sense voltage is compared to a reference voltage by error amplifier IC8. (Since the type UA723 reference voltage is about 7 volts, the +16 V supply ($>7 \mathrm{~V}$) adjusts the sense level.) As the sense voltage increases, the output current at IC8, pin 9 increases and the Q19 collector voltage to PWM IC9 decreases. The decreased threshold voltage at pin 5 of IC9 decreases
the pulse width output from the voltage corrector. The narrower pulse to Q204 (via Q20 and Q13) results in less "on time" for the regulator transistor, and reduces the final output voltage.
5.23 Overvoltage Crowbar. An overvoltage detection circuit (crowbar) for the +16 V supply is made up of a threshold detector (Q102) and thyristor (CR103). If the supply output voltage increases beyond the nominal value, between 16.8 and 20.3 volts, Q 102 switches on and the thyristor fires to short-circuit the supply. The THTR signal is used to shut off the 16 -volt supply during the power-off sequence (paragraph 5-41).
5.24 Overcurrent Detection. Current sensing in the +16 V supply is performed by resistor R207 in series with the supply. The lower-voltage half of R207 is used as a reference at the pin-4 input of error amplifier 1C7. This reference voltage is held constant by zener diode CR8, and an adjustment is provided by trimpot PR4. The higher-voltage half of $R 207$ is used as a sense input at $1 C 7$, pin 3. Zener diode CR10 is used to reduce the sense-input voltage. An increase in current through R207 will increase the sense voltage ('developed across $R 45$) in relation to the reference voltage. The resultant high output from 1C7, pin 2, via Q15, will gate on thyristor CR13 and shut off the +16 volt supply.
5.25 Inhibit Signals. The inhibit signal 1 NH d delays operation of the +16 V regulator during initial power-on time to produce a slow rise of the +16 volts. INHI is active (high) for approximately 300 ms after power on (Figure 5-5). During this initial delay time, the overcurrent detector is blocked via Q17 and the overvoltage circuit is blocked via Q16 and Q18.
5.26 The inhibit signal 1 NH 2 blocks the +16 V regulator if either the +5 volts or -5 volts are not present. Loss of either voltage drops out relay K 102
(Figure 5-3, Sheet 4) which then grounds the output of the overvoltage corrector circuit (sheet 3).

Figure 5-3 (sheet 3) Power Supply +16 V Regulator

[^0]
$5.27 \quad+10 V$ REGULATOR

The +10 V supply for the LOC MOS circuits of the CPU is provided by a series integrated regulator type 7805. It is connected between the +5 V and +18 V supply lines and provides +10 V at a maximum current of 1 ampere which is limited by a circuit within the chip. (See Figure 5-3, sheet 2.)

5.28 Connection for an External Battery Rack

When core memory or both core and MOS memories are used by the CPU an
External Battery Rack is not needed and it is dangerous to make such a connection. When only MOS memories are used an External Battery Rack must be connected if the contents of the memories are to be maintained during power failures. Also alterations must be made to the connections of the +16 V and $\mathrm{S}+16 \mathrm{~V}$ lines as follows:

- Change the position of the U link $S 2$ (Figure 5-3 sheet 3) from NORMAL to the BATTERY position.
- Disconnect the +16 V lead on pin 1 of the Pl card and connect it to pin 2 (BAT) on the same card (Figure 5-3 sheet 3).
It is dangerous to use core memories in this configuration because the value of the +16 V is increased. When no battery rack is fitted a dummy socket is inserted in the battery plug of the power supply to make the +5 VL to +5 VM connection (Figure 5-3 sheet 1).
5.30 Voltage Regulation. The -5V, 2-amp power is supplied by a switching type regulator (Figure 5-3, Sheet 4). Transistor Q1ll is switched on and off at

The -5 V regulator controls the mean voltage V_{M} (following diagram) by varying the switching frequency T in inverse relation to the required correction. The T is increased, while the on-time Δt is held constant, in order to reduce the mean output voltage.

$\frac{V_{M}}{V_{\text {max }}}=\frac{\Delta t}{T \neq}$
5.31 The output voltage is compared to a reference voltage by $1 C 109$. The reference voltage at pin 1 is established by the small-value R156/157 relative to the large R155. When 1 C 109 detects less than 5 volts between pins 2 and 1 it switches off, and Q111 is switched on. With Q111 on, diode CR112 is reverse biased and not conducting; current flows through Q111 and L201 to the load, increasing (more negative) linearly by charging the output capacitors $\mathrm{C} 101 / 102$. The capacitors continue charging until the -5 V is detected by 1C109.
5.32 When 1 Cl 09 detects more than 5 volts, it switches on and Q111 is switched off. With Q111 off, L201 current starts to decrease and CR112 is forward biased; the current now flows through CR112, and discharging from C101/102, decreases linearly. When the sense voltage falls below the reference, IC109 switches Q111 back on and the cycile repeats.

5.33 Overvoltage Crowbar. An overvoltage detection circuit (crowbar) for the -5 V supply is made up of a threshold detector (Q106) and transistor (Q113). If the supply output voltage increases beyond the nominal value, between -6 and -7.5 volts, Q106 switches on and the transistor conducts to short-circuit the supply.

5.34 Overcurrent Detection. The overcurrent circuit comprises sensor

 R151/R150/PR101, switches Q107 and Q109, thyristor CR115, and switch Q110. An overcurrent through the sensing resistor network produces an increased voltage across the base-emitter of Q107 which switches it on. Transistor Q109 then switches on, and CR115 fires. CR115 switches off Q110 (regardless of the voltage operation through IC109) and holds it off until the current drops back below the maximum of two amps.
5.35 ADJUSTMENTS

The +5 V and +16 V regulators can each be adjusted for voltage level and overcurrent by trimpots located on circuit card PO. The switching frequency, which is produced by a clock circuit common to these two supplies, is nonadjustable. The -5 V regulator can be adjusted, for current protection only, by a trimpot located on circuit card PI.

- $\quad+5 V$ output voltage is adjusted by potentiometer PRI.
- $\quad+5 \mathrm{~V}$ overcurrent is adjusted by potentiometer PR2 for a value of 43 amps.
- +16 V output voltage is adjusted by potentiometer PR3.
- +16 V overcurrent is adjusted by potentiometer PR4 for a value of 9 amps .
- $-5 V$ overcurrent is adjusted by potentiometer PRI 01 for a value of 2 amps. Power sequence adjustments are made by trimpots located on circuit card PI.
- Power-Off detection time (paragraph 5.39) is adjusted to 10 ms (with mains at 220 V) by potentiometer PRI03.
- The +16 V detector is adjusted by PRIO2 to switch on when the 16 -volt supply reaches 14.7 volts (paragraph 5.37).

5.36 POWER SEQUENCE LOGIC

The power sequencing logic controls the power-on and power-off sequence of the 5 -volt and 16 -volt supplies and the power logic signals RSLN and PWFN. The logic is included on regulation card PI, and shown on the power supply schematic, Figure 5-3, Sheet 1. A block diagram is shown in Figure 5-4, and Figure 5-5 gives the sequence timing.
5.37 Power-On Sequence. When the power is switched on, the two 5 -volt supplies begin to rise; when they reach their nominal value, relay K 102 energizes and blocks the 1 NH 2 signal (paragraph 5.25). Also at power-on time, the mains detector circuit (amplifier IC103 and schmitt trigger 108-3) generates the VSECTN signal.
5.38 When VSECTN goes low, the $1 \mathrm{NH}-1$ circuit begins a 300 ms delay. During this delay, the 1 NHI signal blocks turn-on of the +16 V regulator (paragraph 5.25). At the end of INHI time, RVSECTI is generated while VSECTN and INHI are both low. Delay 1 is not triggered by the negative-going VSECTN. RVSECT2 drops when RVSECTI comes on.
5.39 Also at the end of INHI time, the +16 V supply switches on and begins its slow rise. When the 16 -volt output reaches 14.7 volts (in about 250 ms), the +16 V Detector circuit (amplifier IC106 and schmitt trigger 108-6) generates

-
Figure 5-4 Power Sequencing Block Diagram

VMEMN (memory voltage). The leading edge of VMEMN triggers Delay-2. RVMEMI is generated approximately 300 ms after VMEMN, when Delay-2 drops. RVSECT2 (inverted af gate 101-3) and RVMEM1 together switch off Q108 to terminate the reset-line signal RSLN.
5.40 Delay-3 is an R-C circuit (R 128 and $C 124$) which produces the RVMEM2 signal 0.5 ms after the rise of RVMEMI. RVMEM2 terminates the power failure signal PWFN, as long as VSECTN and DELAYI are both low.
5.41 Power-Off Sequence. The Mains Detector circuit (amplifier IC103 and schmitt trigger 108-3) detects any mains failure longer than 10 ms , and indicates the failure by de-activating the VSECTN signal. The circuit uses the discharge time of C127 through PR103 and R133. The time constant is adjusted by PRI 03 so that the dropping power reaches the critical level at 10 ms .
5.42 The rising edge of VSECTN drops RVSECTI without a delay, via the the bypass of the $1 \mathrm{NH}-1$ circuit. VSECTN immediately generates power-failure signal PWFN via gates 107-12/13, 101-13/11, and 104-9,10/8. The Delay-1 circuit drops 3 ms after RVSECT1 falls, and RVSECT2 goes high. RVSECT2 thus generates reset-line signal RSLN (via gates 101-1,2/3 and 104-4/6) 3 ms after PWFN.
5.43 The RVSECT2 signal switches on transistor Q103 to generate signal THTRN. This signal activates the +16 V overvoltage circuit which quickly shuts off the +16 V supply. The loss of the +16 volts also drops out relay K 101 ; the closed contacts then ground RSLN, thus holding the signal in its active state while power is off. Since transistor Q108 operates after K101 for power on and before K101 for power off, contact bounce is masked from the reset line.

5.44 The +5 V supply begins to drop after the +16 V supply is off. The fall

 time of the +5 V supply is about 20 ms with minimum load.
5.45 MECHANICAL

The power-supply chassis is mounted on a base plate in the basic mounting box (Figure 5-6). The power supply output voltages are connected to the system circuit cards via back-panel connector 3. The main power-supply assemblies are shown in Figure 5-7. Most of the electronic circuits are located on two printed-circuit cards, PO and PI (Figure 5-8). Powertransistors and rectifiers and the fuses are mounted on the heat-sink assembly (Figure 5-9). A few very large components (coils and capacitors) are mounted directly on the chassis base plate. The mains power transformer (T201) and the two fans are mounted on the basic box at the rear. The key switch is mounted on the front of the basic box (Figures 5-6, 5-9). All components not mounted on the two circuit cards have the reference designations 2 .

5.46 Top Cover Removal

Figures 5-6 and 5-7 show the power supply with the top cover removed. The cover is attached by five screws : two on each side and one in the back, at the corner near the fan.

5.47 Power-Supply Chassis Removal

The power -supply chassis (except mains transformer and fans) can be removed on its base plate from the basic mounting box. (Refer to Figure 5-7.)
Disconnect :

- connections at connector 3 (five small plugs, not the two bigger ones; main ground, at connector-3 end).
- RTC connector.
- TR201 outputs 10 through 21.
- Circuit card PO, for access to remote-key connections:
a. connector plug off.
b. Remove four screws and spacers onto PI (one at each corner of PO). A ground wire from the remote key is attached by one of the corner screws.

Figure 5-5 Power Sequence Timing

- remote-key connections A, B, C.
- Pl power connections (five plugs) as follows :

- Six screws, three on each side, directly through base plate -- not those through any other brackets mounted on the base plate (however, one does hold a plastic cable clamp).
5.48 Heat-Sink Assembly Removal

The heat-sink assembly can be removed from the basic mounting box. The * indicates the steps ablready done if the power-supply chassis has been removed from the mounting box. (Refer to Figure 5-7). Disconnect:

* - connections at connector 3 (five small plugs, not the two bigger ones; main ground, at heat-sink end).
- connector plugs at P0 and PI.
* RTC connector.
- TR201 outputs 10 through 21 .
- three cables to C204 and C205 (the two biggest capacitors).
- Unsolder three wires to C206 and C207 (the fwo smaller capacitors).
- $\quad+5 \mathrm{~V}$ cable to L203.
- $\quad+5 \mathrm{~V}$ power cable (through L204) at both ends.
- ground connection between heat sink and base plate.
- four mounting screws, each through a plastic foot bracket, from the base plate.

5.49 Circuit-Card PO Removal

The PO circuit card must be removed before the power-supply chassis is removed or the Pl circuit card is removed. PO can also be removed alone from the basic mounting box. (Refer to Figure 5-7). Disconnect:

- connector plug.
- four screws and spacers onto PI (one at each corner of PO). A ground wire from the remote key is attached by one of the corner screws.

5.50 Circuit-Card P1 Removal

The PI circuit card can be removed from the power-supply chassis. The * indicates the steps already done if the chassis has been removed from the mounting box. (Refer to Figure 5-7). Disconnect:

* - and remove card PO (previous paragraph).
* - remote-key connections A, B, C .
- all eight power connections of connector 3 .
- the +5 V cables to L203 and L204 (from the same point on the circuit card).
- ground cable to the heat sink.

5.51 List of Components

All power-supply components are listed in the following parts-list, Table 5-1.

C to $G=$ Parts Lists Included

[^1]Table 5-1C Regulator Card PO Parts List

Reference	Description	12NC Code
R22,27, 28. RI8. R17. 23. R35, 37, 44, 45. RI. R34. R53. R2. R41, 42, 43. R5, 6, 7 . R63. R64. R55. R65. R66. R19 C4.8. C3. C $2,6,9,11,20,25,26,28,31,39$. Cl9. C5,13,16,30. Cl, 10 . C7,17,18,24,27. C12,15, C22. C23. C14. C33. C32,34. C37. C29. C38. C35. I I.		

Table 5-1D RST Card PI Parts List

Table 5-1D Contd.

Reference	Description	12NC Cod.
```R 159. R 156, 157. R 122. R 125. R 145. R 138,147. R 101, 106. R 104, 152, 192. R 149. R 114. R 102,107. R 120. R 121. R 108, 109, 110 . R 151, 168. R 139. R 164. R 165. R 162. R 140 . R 163. R 155. R 169. R 129 C \(123,126,128,130,134,136,138,141\). 144,190. C 131,139. C \(142,143\). C 129. C \(115,110,120,122.119\). C 119,132. C 135. C \(117,125,137\). C \(124,127,140\). C \(118,121,133,145,149\). C 146 . C 147. C 148. C 104. C. 105-114. C 101, 102. C 150```		later version)   (later version)   later version

Table 5-1D Contd

Reference	Description	12NC Code
$\begin{array}{ll} \times 101 . \\ \times 102 . \\ \text { K } 101 . \end{array}$	Relay MRMD 15006.   Relay MRMD 15005.   Fuse DI/O.I.   Mica insulatar 56325   Triac Hear-Sink	511110022541.

Table 5-1F Heat Sink Assembly Parts List

Reference	Description	12NC Code
```R203,204,205. R206. C201,202,203. C210,211. C212 F201. F202. f203. F204,205. REG I```	Heat-Sink Sub-Assembly   Harness (M4,M5) or   Harness : M5).   Resistor $10 \mathrm{n}, 0.5 \mathrm{~W}$, 5"o.   Resistor 27n, 0.5w, 5\%.   Capacitor $0.022 \mathrm{pF}, 250 \mathrm{~V}, 10 \%$ PMA   Capacitor $10 \mu \mathrm{~F}, 100 \mathrm{~V}, 20 \%, \mathrm{PMA}$.   Copacitor 3.31F 25 V   Fuse A13: 20.   Fuse D8 10.   Fuse DI:2.   Fuse DI/3.15.   Regulator 7805 (TO22)	$\begin{aligned} & 511119975380 \\ & 511119975370 \\ & 511119973630 \\ & \\ & \\ & \\ & \text { Lare version } \\ & \\ & \\ & \text { (later version) } \end{aligned}$

Table 5-1G Heat-Sink Sub-Assembly Parts List

Reference	Description	12NC Code
L204. IC 201. Q 201,202,203,204. CR201, 202. CR203. CR204. CR205, 206, 207, 208. U 201 . R 207.	Heat Sink Inductance SLF 2541. Regulator 7815 (T03). Transistor 2 N5685. Diode RPR 1040 R. Diode iN3910R. Diode BZY93 C9VI. Diode BYX52 300R. Bridge MDA 952-2. Resistor 0.1 n, 3°, (RHIO). Reloy REVIC ID.	511110022523

TOP/CARD SIDE

REAR/BACK-PANEL SIDE

Figure 5-7 Power Supply Assembly Locations

REG CARD

RST CARD

5.52 POWER SUPPLY FOR EXTENSION RACK E2

The power supply provides a $+5 \mathrm{~V} 2.4 \%$ regulated d.c. voltage, +18 V and -18 V unregulated d.c. voltages, and the Power Failure and Reset Logic signals for the control units in the rack. It also provides the +19 V used by the mains detector logic. The power supply is made up of five sub-assemblies. These are:

- Mains Filter and Local/Remote switching
- Mains Transformer
- Power Block
- Sequence Card
- Fan unit to cool the whole cabinet

The mechanical layout of these sub-assemblies is shown in Figure 5-10.

5.53 ELECTRICAL DESCRIPTION

Figure 5-11 shows a block diagram of the Power Supply and Figure 5-15 is the schematic diagram. The following paragraphs describe the function of each block and relate the blocks to the components on the schematic diagram.

5.54 a.c. Input

The a.c. mains is connected to the mains transformer via a mains filter and a Local/Remote switch S201. The value of the input fuse F 303 is for $110 / 115$ volts operation type D8TD/6.3A slow blow and for $220 / 240$ volts operation is type D8TD $/ 3.5 \mathrm{~A}$ slow blow. With the Local/Remote switch in the Local position the live line of the mains is connected to pin 1 of the transformer via the contact of switch S201. With the Local/Remote switch in the Remote position the live line of the mains is connected via the contact of relay $K 201$, which has to be energised by an external +5 V supply.

Figure 5-12 Mains Transformer Connections

5.55 Mains Transformer Connections

The mains transformer can be connected to either $240 \mathrm{~V}, 220 \mathrm{~V}, 115 \mathrm{~V}$, or 100 V mains supply; Figure 5-12shows the different configurations. Pin 9 of the transformer is the shield and is always connected to ground, and the fan is always connected between pins 1 and 3 (115 V nominal).

5.56 Rectifiers and Filters

The output voltages from the three secondary windings of the transformer are rectified and filtered to provide four raw d.c. voltages. Fuses F301, F1, F2 and F4 protect the rectifiers and transformer if overload conditions occur.

5. $57 \quad+5 \mathrm{~V}$ Regulator. The raw d.c. voltage for this circuit is provided

 by a full wave bridge using CR304-CR307 and is filtered by C302; the output at fuse F 301 is approximately 30 V d.c.$5.58+18 \mathrm{~V}$ and -18 V Unregulated V oltages. These two voltages are provided by two center tap full wave rectifier circuits CR10-CR13 and are filtered C304 and C305.
5.59 Mains Detector Voltage. This is provided by a center tap full wave rectifier circuit CR8 and CR9 and is filtered by C5; the output voltage is approximately +19 V d.c.

$5.60 \quad+5 \vee$ Regulator Circuit

This is a switching regulator using Q301 and Q302 for the switching controlled by IC7. The switching frequency is 20 KHz at full load but the frequency will decrease when the load decreases. The frequency is adjusted by changing the value of R49, and the output voltage is adjusted by potentiometer PRI.

5.61 +5V Overcurrent Protection

The overcurrent detector circuit uses transistors Q11 and Q12 and thyristor CR15.
Q11 monitors the current flowing through R301 and when the signal is about
700 mV Q11 is switched $O N$ and the thyristor is triggered. Then Q12 is saturated
so Q301 and Q302 are cut off and the signal from R65 inhibits IC7. Overcurrent adjustment is by, potentiometer PR2 and it is normally set for a value of 20.7A at $25^{\circ} \mathrm{C}$ ambient temperature. Thermistor R68 is included in the adjustment network to give temperature correction.

5.62 +5V Overvoltage Protection

The overvoltage protection is provided by transistor Q101, zener diode CR105, and thyristor CR101. The transistor and zener are the threshold detector and Q101 is normally OFF. When the voltage increases above the operating value of the zener (in this case between 6 V and 7 V), Q101 is turned ON and the thyristor is triggered short circuiting the output from the +5 V supply.

5.63 Sequence Logic

This logic uses the output from the mains detector circuit to control the Switch ON / Switch OFF sequence logic and to provide the Powerfail (PWF) and Reset (RSL) logic signals.
5.64 Mains Detector. The output from the two diodes CR8 and CR9 drives the transistor Q2 circuit that triggers the two monostable chips ICI and IC4 if a mains failure longer than 10 mS occurs. The 10 mS delay time is adjusted by changing the value of R4.

5.65 Switching ON. When the mains present signal (from the mains detector

 circuit) is high on pin 4 of IC4 the monostable is triggered and after a delay of 300 mS (to allow the output voltages to reach their normal operating values) the output from pin 7 triggers the other two monostables that enable the PWF and RSL signals. During this delay the output from pin 6 has triggered ICl and after a delay of 150 mS the output from pin 10 activates the transistors of the relay driver (Q3-Q5), and the relay operates opening the contact and removing the ground connection to the collector of Q6; the state of the RSL signal will still stay at the low level (0) until enabled high by the output from $1 C 4$ pin 9 . When pin 7 of IC4 goes high the signal from pin 3 of IC3 triggers ICI pin 4 and it is also used to bypass IC4 (which is only used during Switch OFF) and enable RSL to go high.After a delay of $400 \mu \mathrm{~S}$ the output from pin 7 of ICI goes high enabling the PWF signal to go high and the supplies are considered operational.
. 5.66 Switching OFF. When either a mains failure longer than 10 mS occurs, or the +5 V d.c. disappears, or the power supply is switched OFF the following sequence occurs. The mains present signal goes low and bypasses IC 4 pin 4 and ICI pin 4 to send the PFW signal low. At the same time it is used to activate pin 11 of IC4 which triggers and after a delay of 2 mS the output from pin 9 sends the RSL signal low. A feedback signal from the RSL logic (via IC6 pin 12) is sent to the relay driver circuit and the relay is de-energised, the contact closes and the RSL line is grounded.

5.67 Timing

The timing diagram of the sequence logic is shown in Figure 5-13 (the circled numbers refer to points on the schematic diagram), and the timing diagram for the d.c. voltages and the logic signals is shown in Figure 5-14.
5.68 Timing Adjustments

The timing of the sequence logic can be adjusted by changing the values of R and C as follows:

- 300 mS - change R24 and C11
- 150 mS - change R21 and C13
- $400 \mu \mathrm{~S}$ - change R19 and C8
- 2 mS - change R28 and C10

5.69 MECHANICAL DETAILS

The position of the extention cabinet (E2) in the 19 in rack in relation to the other units will decide if the cabinet has to be withdrawn completely before trying to troubleshoot the power supply. The following description assumes that the cabinet has to be removed from the rack, so if this does not apply to your system the instructions for removal and replacement can be ignored.

5.70 Cabinet Removal and Replacemen

Make sure that the cabinet has been disconnected from the mains supply then:

- Remove the protective cover from the power supply by removing the four retaining screws and lifting the cover clear of the cabinet.
- Remove the blank front panel by unscrewing the two Allen screws and lifting clear.
- Remove the cabinet's four retaining screws and pull it towards you until the relescopic slides are fully extended.
- Disconnect the $1 / O$ cables.
- Turn the two fixed slide retaining screws (one for each telescopic slide), one half turn in either direction until the fixed slide spigot is free.
- Pull the cabinet towards you until it is clear of the telescopic slides.

The cabinet can be replaced using the above instructions in the reverse order.

5.71 Power Supply Sub-Assemblies

The following paragraphs describe the removal of the five power supply subassemblies.

S. 72 Sequence Card (REG E2)

Remove the four retaining screws and unplug the card from the connector.

5.73 Power Block

Remove the Sequence card, then remove the card mounting plate by unscrewing the three retaining screws, then:

- Disconnect the input leads from the transformer making a careful note of their positions.
- Disconnect the output leads from the power block making a careful note of their positions.
- Remove the retaining screws (underneath the cabinet) and lift the Power Block clear of the cabinet.

The Power Block can be replaced using the above instructions in the reverse order.

5.74 Mains Transformer

Remove the Sequence card and the card mounting plate, then:

- Disconnect the input and output leads of the transformer making a careful note of their positions.
- Remove the four retaining screws (underneath the cabinet) and lift the transformer clear of the cabinet.

The transformer can be replaced using the above procedure in the reverse order.

5.75 Mains Filter and Local/Remote Switch

Remove the Sequence card and the card mounting plate, then:

- Remove the fuse and Local/Remote switch by unscrewing their locknuts
- Disconnect the input leads to the transformer making a careful note of their positions
- Remove the relay mounting plate retaining screws (located on the side of the cabinet).
- Remove the two filter retaining screws and the mains lead clamp, then lift the assembly clear of the cabinet.

The mains filter and Local/Remote switch can be replaced by carrying out the above procedure in the reverse order.

5.76 Fan Uni

Remove the Sequence card and card mounting plate and disconnect the fan lead from the transformer, then:

- Remove the top protective cover (over the control unit cards) and remove the control unit cards.
- Remove the four fan retaining screws and lift the fan clear of the cabinet. The fan unit is replaced using the above procedure in the reverse order.

5.77 COMPONENTS

Figure 5-16shows the component layout of the Power Block, Overvoltage Card, Mains Filter and Local/Remote switch assemblies and Tables 5-2 to 5-4 list the components. Figure 5-17 shows the component layout of the Sequence card and Table 5-5 lists the components.

Figure 5-16 Power Supply Component Location

Table 5-2 Power Block Parts List

Reference	Description	12NC Code
$\begin{aligned} & \text { R304. } \\ & \text { R303. } \\ & \text { C306. } \end{aligned}$	Heal Sink Harness $\begin{array}{llll}\text { Resistor } 22 n, & 0.5 \mathrm{~W}, 5 \% & \\ \text { Resistor } 4.7 \mathrm{n}, & 0.5 \mathrm{~W}, 5 \% \\ \text { Copacitor } 0.1 \mu \mathrm{~F}, & 100 \mathrm{~V}, & & \\ & & \end{array}$	511119978070 511119978060

*Table 5-3 Overvoltage Card Parts List

Reference	Description	I2NC Code
R103. R104. R101. R. 105 . R106. C101. 102. C $10{ }^{3}$. CRIOS. CRIOI. Q101.	Printed circuir Zener Diade BZX79 C5V6. Thyristor BTW47 - 600RM. Transistor 2N2906.	511110005404

Figure 5-17 Sequence Card Component Layout

Reference	Description	12NC Code
iCs. ic 6. IC3. IC2. IC4, ICI. iC7. Q2. Q6. Q11,Q12. Q3,Q4, Q5. CRI4. CRIG. CRI. CR2. CRG, CR7. CR8, CR9. CR3. CRIO,CRII. CRI2, CRI3. kI. PRI. PR2. CRIS. F2, 4 . FI. R65. R67. R9, 12, 31, 48, 51,52,66. R47. $R 16$. R24. R6. R39. R28. $R 5$. R21. R19. R54. R7,10,11. R8, 29. R53. R55.	Printed Circuir Integrated circuit 1801. Integrated circuit 7404. Integrated circuir 7408. Integrated circuir 7414. Integrated circuit 9602. Integrated circuit U6A 7723393. Iransistor BS $\times 20$. Transistor $\mathrm{BS} \times 60$. Transistor 2N2905. Transistor 2N2219. Transistor 2N1595. Zener Diode BZVIoC15. Zener Diode BZx79C4V7. Zener Diode BZX79C7V5. Diode BAX13. Diode BAXI2. Diode IN746A. Diode BYX49 - 300 . Diode BYX49-300R. Relay MRMD 15005 . Potentiometer 2600 Pl02 1000. Potentiometer 2600 Plol 100. Thyristor 2N2323. fuse DITD/3.15. Fuse DIID/0.31.	511110005622

Table 5-5 contd

Reference	Description	12NC Code
```R17. RSO. R56. R38. R49. k4. R68 (4.29. C2% C10. C32. C1,10,20. C7. C3 CS co. (28,33. - C13. (14-17,22,23. Cl1.```		'


[^0]:    Figure 5-3 (sheet 4) Power Supply +18V, -18V, -5V Supplies

[^1]:    C to $G=$ Parts Lists Included

