PTS 6800 DATA MANAGEMENT

2. PRINCIPAL ASPECTS OF DATA MANAGEMENT

This chapter describes the characteristics of data and files as seen by the system. Although
much of this will be familiar to the experienced programmer he should nevertheless read
this chapter before using the rest of the manual in order to understand how the terminology
and concepts of data and files are used on the PTS system.

2. Files

When using the word fi/e it is assumed that the data coliected in a file is recorded in such
a way that it can be read by a machine. This restriction places a file within the field of
automatic data processing, within the limits of a computer program.

Thus, a file is a machine-accessible collection of data which should be organized logically
according to the accessibility requirements of the separate data elements and the overall
collection.

A file cansists of a number of records, each record giving infarmation on a specific subject.
in an account file each record describes one account. A record consists of a number of data
items. The current balance, for example, is one of the data items in an account record.

In a program the data items of a record can be given names so that they can be referred to
and processed.

recard
key number
DOE 2
JAMNSEN 3
! PRty file JONES 5
index
er o MANN 4
j b Mane REILLY 6
data items [+ Jusen SMITH 1
F. Do
namp ——————— | F. Sk record 6
scddrasy [28 Any Spraee)

809023231 file

numbaer record 3

halance 203.75- —

[——
! record B
Anytown
seeaunt ‘ recard 4

recend 1

Filgure 1.1 Composition of a fife (with an optional index)

2.1.1 Use of elata fries

Data processing, at least in business applications, is very often a matter ot routine.

Files give a permanent description of some aspect of the business environment. As fong as
the information systern manages to keep this description up-to-date, efficient processing
may be done on the basis of this description.

Some processing only uses data stored in permanent files. If a user wants to know the
current balance of an account holder, itis sufficient to select the amount from the relevant
file, assuming that the file has been kept up-to-date. Keeping files up-to-date implies that
changes must be made as a rosult of some calculation (an amount paid in is added to the
account balance}, or to some permanent item (the account holder’s address).

2.1
May 1978

Thus two types of data may be distinguished:

— input data

— permanent data (note: the existence of such a data item is permanent; the value of the
itern may be changed).

The new data could be input to the system in one of two ways:

— it could be gathered into input files from one or more sources and presented to the
system as a batch of changes to be processed at one time (batch processing).

— it could be input via a terminal during the actual transaction that generates the change
{on-tine transaction processing).

2.1.2 Retrieving data

When processsing a file, data will be retrieved from the file, i.e. specific units of data are
separated from the file and considered by the processing system. If necessary, the data is
modified and rewritten to the file. For instance, when updating an account record it wilt
be retrieved from the file and, after modification, be rewritten. Sometimes several data
itemns of the same record must be considered and if necessary, updated at the same time,
e.g. 8 woman account hoider gets married and changes her surname and address.

When serving a customer, his account record will be required. Since the correct account
record must be located, the record must have some identification in the form of a unigue
name or number which can be reffered to during the transaction.

For this purpose "'keys’ are used. When the key is known, the corresponding record can

be retrieved from the file. The account number could be the key to the customer’s account
{this item is also a data item of the record required). Such an item is called the record key.
Anaother example of a record key is the aceount holder’'s name.

The kind of key used is important when considering the methods of accessing the record

in the file and possibty the organisation of the file.

In the case of a numeric data item such as the account number, the file can be constructed
in such an crder as to ensure that the last few digits of the number represent the record’s
actual position in the file. Account npumber 80803237 could be the 3237th record relative
to the beginning of the file. This record key is called the ‘logical record number’.

However, if the file is ordered according to the alphabetic order of account holders’ names
some other kind of key must be used because there can be no numerical relationship
between alphabetic data items. The record key must be cross-referenced by an index to
give the logical position of the record on the file.

Thus it can be seen that two kinds of recard key exist:

— the logica! record number that permits direct access to the record

— an index that provides a cross-reference to the record on the disk.

2.1.3 Accessitbility of Files

The main mode of operation of the PTS 6800 terminal system is ‘on-line processing’. This
means that most accesses to files will be as a direct result of a request from one of the work
positions. One work position should be servicing on account holder’s transaction {deposit or
withdrawal of cash) and another work position coutd want reports on the current status of
account. In this mode of operation it is probable that more than one task wants access to
the same file at the same time. Each of these tasks can treat the data in an entirely

different way.

Consider the fallowing file composed of 10 accounts.

1 2 3 4 5 6 7 8 9 10

21.2
May 1978

PTS 8800 DATA MANMAGEMENT

Task AQ wants only the data relevant to the present customer. Customers come inte the
office at random, so the data accesses would be random, for example the following sequence
might pcour:

7,5.8,34,62.........

Task BO wants a report on the present balance of each account, so would access the file
sequentially in account number order:

1,2,3,4,5,6,7,8,2 10

Task GO wants the present status of certain accounts accessed with the account halder's
name. In this example, the system must have a cross-reference index between the name and
the account record. Accesses for task © would appear thus:

F. Smith J. Doe J. Jansen A, Mann — index
i) 1 1 |
3 7 9 3 — record

The access is random (the order of requirements cannot be predetermined) and via an index.

Physically the data file is the same for all tasks. The system itself only sees one kind of file,
However, each task sees a different logical relationship between records and as a file is
organised according to the logical relationship between records, each task ‘sees’ a different
file arganisatior.

It is important to note the distinction between access methods and types of file. There are
only two methods of accessing a record:
— direct access {gither the ‘next’ record Irom the current position or via a logical record
nuember)
indirect access (via an index).

File organisation is a {ogical concept ihat describes the relationship between record accesses
as seen by the lask. There are three kinds of logical file:

- sequential {as seen by task BO)
— random {as seen by task AQ)
— indexed random (as seen by task CO}

Each Kind is described in more detai) in section 2.1.7 and chapters 4, 5 and 6.

2.1.4 File turnover and growth

During the narmal course of business, some accounts are closed and some are opened and the
corresponding data in the accounts will be changed. Dato is deleted and new data is inserted,
These activities are called 'file turnover’. There may be no mare data in the file than there
was before. The file did not grow but part of it was deleted and somewhere else a compara-
ble set of data was inserted.

Fite turnover places certain reguirements on the construction of a file. For example, new
records cannot be inserted in the free space left by the old records, although items within
the record can be replaced by new values. Differcnt tasks can use different rules to deter-
mine the validity of new data. A file of accounts arganized by account holder’s name could
have problems if there are two account holders by the same name { like father and son, or
coincidences with comman names).

Associated with the problermns of file turnover is that of file growth. The number of records

must be specified at the tirne the file is created. Allowance must be made for an increase in

the user’s business by specifyving enough empty records for the file 1o grow without needing

re-arganizing. The factors 1o be balanced are:

— availability of disk space Tor ‘empty records’

— rate of growth of the file {especially in the initial set up of the installation when data is
heing transferred onto the systemi

213
May 1978

PTS 6800 DATA MANAGEMENT

— time available for re-organising files (busy installations cannot afford to waste time on
frequent ‘housekeeping’ jobs).

— nuisance factor to the operator (if files are constructed without enough room for growth,
they may cause overflows requiring frequent re-organization).

2.1.6 File Organization

The PTS system recognizes three Kinds of file organization:

— standard files {type S}

— library files (type L}

— non-standard files {type X}

A standard file is one that has been formatted under the TOSS system for use by an
application that operates under TOSS. All the files described in this manual, are ‘standard
files’ and all these files are understood to contain data, or index records.

A library file is one that contains program coding in ene form or anocther, i.e. as source,
intermediate object or loadable form. This kind of file is outside of the scope of this manual
and the reader should refer to manuel M11, the DQOS System Reference Manual, or MO8,
the TOSS Utilities Reference Manual.

A non-standard file is one that is either unformatted, or from a computer system that uses
different labelling and formatting standards. This kind of file is outside the scope of this
manual and the reader should refer to manual M11, the DOS System Reference Manual,
or M08, the TOSS Utilities Reference Manual, in order to process this kind of file.

2.1.6 File categories

All files used by the Data Management instructions can be divided into the following “file

categories’:

a. Data files — these contain information that is processed by the tasks and could contain
records about accounts, account halder’s etc. A data file on its own can be used for
sequential or random requests.

b. Index files — these contain a list of symbolic keys that are used to reference records in
data files. The use of an index file considerably reduces search time for a record,
especially if the record can be referenced by more than one key. Index files can be
treated as a data file for updating purposes {sequential requests) or used as the index to
a data file {indexed random requests).

c. Master index fifes — this is a 'summary’ of the index file that is produced after the index
file has been created. |t reduces the time required to search an index file and is used by
the system in conjunction with indexed random requests. The master index file is held
in memory after its relevant index file has been assigned to a task.

With indexed requests, these different files are related by pointers. A data file can be
associated with more than one set of index/master index files but these latter cannot exist
without a data file. A set of data, index and master files constitute a “file structure’. A file
structure can only contain one data file.

2.1.7 Data File Organization

Data files can be organized in one of three ways:

a. sequential — the file is created and accessed in such a way that records are processed
serially.

b. random — there is no relationship between records and they are required randomly. Each
record is accessed by its position relative to the beginning of the file via its logical record
number.

¢. indexed random — records are accessed via a key that is contained in an ‘index file'.

2.1.4
May 1978

PTS 6800 DATA MANAGEMENT

The kind of organization used depends basically on the use of the file. A sequential file is
used where actions are always carried out in a sequential order, far example list processing,
reporting on the state of accounts, logging various activities on-line as they occur.
Sequential files are more often seen in batch processing, but could be used for on-line
processing in some circumstances, ‘or example log files, see chapter 3.2,

A random file is used when the accesses are happening at random times and to randomly
required records. This kind of file organization is mare often seen in on-line processing
where the accesses are coming from any number of terminals dealing with randomly
occurring events, for example, customers walking into a bank to deposit or withdraw cash
from their accounts. 1t would be nonsense to expect the customers to visit the back in
alphabetical order so the files must be organised to allow records to be accessed directly —
one of the data items in the record must be used to indicate the record’s position in the file
relative to the start of the file.

The usefulness of a random file is limited if records are to be accessed by a choice of items,
for example, an accaunt file could be accessed by either the account number or the
account-holder’s name. If this is the case then all the items used for access (the keys) must
be set up in a cross-reference file (the index) that gives the logical record number related to
all the keys. This method of arganizati:. . i data file with an indx, is called indexed
randem. : :

Each kind of data file organization is described in the following chapters.

215
May 1978

PTS 6800 DATA MANAGEMENT

2.2 Volume Organization

A volume is a single physical unit capable of holding information.
Far the purpose of this manual this is understoed to be:

— aremovahle disk cartridge

— a fixed disk

— a flexible disk

2.2.1 Disk Structure

Each disk volume 7s divided into cylinders, each cylinder into tracks, and each track into
sectors. The user program does not use this structure as it only addresses records within a
file. The programmer must be aware of this structure when constructing files as it could
affect the blocking factor of records within blocks, number of file extents in the volume,
or number of volumes required for one large file. The structure of the PTS 6875/76 disk is’
shown in the figure below.

| 4 (205/406)
volume I 1 .
cylinders
eylinder } \: (2 tracks]
track I T T T T 7 T T 7T T T 1 (16 sectors)
sector E | (401 bytes)

Figure 1.3 Disk Structure, PTS 6875/76

Each sector can be subdivided into records according to the program’s requirements. The
number of records stored in each sector is called the blocking factor and (record size X

the blocking factor} should never exceed 401 bytes. The largest record allowed is 400
bytes + 1 status byte used by the system. Every record in the file has one byte reserved for
system purposes so a record of 80 data bytes must be created as a record with the length
81. When accessing the record, the program uses the length ‘80", Thus only four records
could bhe hlocked onto one sector {5 x 81 = 405, is too large}. If the record length could
be reduced to 79 data bytes + 1 status byte then five records could be blocked onto

one sector, making more efficient use of disk space.

votume i {77 tracks)
track I (Ei"f'z sectors DM format
26 sectors IBM format
sector } | £401 bytes DM format)
! 128 bytes IBM tormat

Figure 1.4 Flexibfe Disk Structure

221
May 1878

PTS 6800 DATA MANAGEMENT

|
. I . bytes per
. Cylinders Tracks per Sectors .
disk modet , s) sectar avaifable
per volume (.yhnder__ per track ‘o the usor
PTS 203 2 i 16 401
2x 2% M
PTS 6876 406 2 16 401
2xb5M |
tracks per :
volume
PTS 6879 — 77 6% 401
{flexible disk) DM farmat
26 128
| I8N farmat

Table 1.1 Disk Capacity Available to User Prograrns

Some of the space on both disks and flexible disks is reserved for system use and 5o can
never he accessed by user programs, see the tabic below.

disk model I sysrr:m-resefvmf aféas Purpose
PTS 6875 | iSL‘ylinder 00, track 00, Sector 00 | Volume Labe!

PTS 6876 | Hevhinder 00, track 00, Sector 01 [Initial Program Loadear (IPL)

PTS 8875 cylinder 200 203 system Use

PTS 6876 cylinder 406 407 systern use

flexihle disk track (0, Sectors 07-04 (128 byte

(PTS 6879) sectors Volume Label
track 00, Sectors 05-08 {128 byte

sectors 7L

Tablo 2 Rescrved Areas

Note that both dislks and flexible disks will have variable amounts of space allocated to the
Volume Table of Contents {(VTOC) depending upon the number of file extents.

The VTOC contains one record of 471 bytes for every tile extent on the volume, VTOC
records are blocked 9 per sector so simply divide the number of file extents by 9 to find the
number of reserved sectors.

The VTOC is accessible oniy through Assembly routines, so the reader is referred to the
Assembler Programmer’s Reference Manual.

2.2.2 Creating 5 valtung

A disk volume cannot he used on the PTSB800 system until it has been initialized and for-
matted by the Create Volume utility {CRV), A full description is available in the Utilities
Reference Manual, MOB an in M11 DOSE800 Reference Manua! {(TOSSUT Utility}, butis
mentianed briefly here, CRY writes a volume label and an empty VTOC, then writes
cylinder identifiers in all sectors. This identifier ‘< outside of the area of the sector that is
available 1o the user. CRV also performs a quality test on each sector by writing then

reading back. If any defective sectors are found CRY creates a dummy file called 'BADSPOT
and assians all unusabis sectors to that file, IPL s written to the disk and CRY terminates.
The volume is then svailable for use, unless any oadspots are located in the arca reserved for
the veiume label on 1P,

’

222
April 1970

PTS 6800 7ATA MANAGEMEN

2.3 Recoid handlin ;

2.3.1 xclusive access

Dava tiles may be shared by a number of tasks, so simultanuous updating of records must be

, reverted. Exclusive access s a function which is used to prevent simultaneous updating or

rac- ds. “he exclusive access funrtion for use by the user program is inciuded at system
sneration time, but is superfluocus when anly one task exists using data management.

However, the user still has the possibiiity to allow exclusive access setting for a record as an
“ation w the instruction {assuming that exclusive access was inciuded at system generation

gl

Fxclusive access is controlled an ecord level, which means that individual records can be

neld under exciusive access {no other task can get these records) but not the whole file.

tn this way a task may have in one file more than one record under exciusive access and the

task can have rezords under exclusive access in different files.

In one file different records can be under exclusive access for different tasks.

Example 1

FILE1 R R2 R3 R4 RS R6 R7 R8 RI RI0RITRI2 R13 R14
}_ Jl' V.-"a’.-' J.'“,rl % [r' T [% IJ.IJ,'I,r.rJ.”! | 1 J |

R = Record Records 3, 6 and 10 under

exclusive access for task “AD".

Fxample 2

R1 R2Z R3 R4 Rb R6 R7 R8 RS9 RI0R11R12R13 R4

FILE1 ittt

FILE2 :\ b
FlLE 3 L | I\J ’] ! | f H 1 J‘. I I I |

Record 2 in FILE 1, Record 4 in FILE 2 and Record 2in FILE 3
under exclusive access for task "BO".

Example 3

R] R2 R3 R4 RH R6 R7 R8 R9 FHU R11 R12 R13 R14
FlLE1 l | | S | —
t UFTE, ,,-")‘,: T T 1 T '-’,.".",n' ,1 T T T T 1

Record 2 Record 5 Record 9
under exclusive under exclusive under exclusive
access task AD Access task B1 access task A2

237
May 1878

PTS 0B0Q DATA MANAGEMENT

Exciusive access is not used for index files, only for data files.

A record can be set under exclusive access, after an unsuccessful read operation. Exclusive access
is released after a (rehwrite, delete or release exciusive access operation of the record has

been performed.

When a record is accessed which is .ready under exclusive access by anather task, a status

is returned indicating “‘record protected’’.

2.3.2 Current record number

Data mangement has an internal handling of Current Record Number (CRN). For each file
structure (files consisting of one data file and possibly index and master index files) an area
is reserved per task in the system by data management, in which the CRN from the last
request on this file is stored for each task.

Some instructions use this CRN value befare execution to obtain the next record. After
execution of the instructions the CRN may be updated by data rnanagement, depending
on the type of instruction (see table 2.3 below). This current record number can be
obtained by the user with the command ‘get currency index’ or ‘get currency data’. In this
case the last accessed record of the index and data files, respectively, is returned to the
user far this task.

CRN used for execution of the CRN-updated after execution of

lnstriiction instruction, Affected on file the instruction. Affected on fife
! fvpe: type:
! Saguential Read Data file Data file

Sequential Write — —

Random Read L Data file

Random Write - Data file

Random Deierw — —

Indexed Read : Data file + Index file

Indexed Hewrite Data file

Intfexed Delete -

Indexed nsert (- Data file + Index file

tndexed Read Noxt Index file Data file + Index file

Table 2.3 Current record number handling

2.3.3 Lastrecord number

Data management halds per file {nat per task) a last record number painter (LRN} indicating
until which record the file is filled. The user cannot access this painter, but can be informed
by means of an error return code, or via the control word after a sequential write.

When a fiie is created by the utitity Create File, the last record number paointer is ahways set
to the beginning of that file. After u sequential write the pointer 1s updated every time a
record is written. Tha sequential write and Indexed Insert instructions will influence the
updating of the last rocord number pointer. However, the LRAN is not put onto the disk

until the file has been closed.

232
May 1878

FILE 1 1 } !
LRN {after a create file}.

R1 RZ R3
FILEt | t I ; :

+

LRN ({after 3 records have been written by a sequential write
and the file has been closed).

By the indexed and random instructions the user is able to read or write records located
after the last record number pointer. However, an error code is returned indicating an
“End of Fite’’ condition, but the /O operation is not aborted. It is up to the user to decide
whether an action has to be taken or not. When a sequential read results in an error code
with the “End of file” bit set, the |/O operation wilf be aborted. Note that, when a file is
being processed a difference in the value of the last record number pointer may exist
between the one on disk and the one updated in memory. After the file is closed this
updated last record number pointer is saved on disk.

233
May 1978

