Field Support Manual P859 Rack (M4R) \& Power Supply

```
A PUBLICATION OF
PHILIPS DATA SYSTEMS
APELDOORN, THE NETHERLANDS
PUB.NO. 5l22 991 30781
DATE January 1981
```

Great care has been taken to ensure that the information contained in this handbook is accurate and complete. Should any errors or omissions be discovered, however, or should any user wish to make a suggestion for improving this handbook, he is invited to send the relevant details to:

PHILIPS DATA SYSTEMS
SERV. DOC. AND TRAINING DEPT.
P.O. Box 245, APELDOORN

THE NETHERLANDS.

Copyright © by PHILIPS DATA SYSTEMS.
All rights strictly reserved. Reproduction or issue to third parties in any form whatever is not permitted without written authority from the publisher.

```
TITLE : P859 RACK (M4R) AND POWER SUPPLY
```

PUBLICATION NUMBER : 512299130781

	TABLE OF CONTENTS		PAGE
CHAPTER	1	GENERAL DESCRIPTION	$1-1$ thr $\cdot 1-22$
	2	FUNCTIONAL DESCRIPTION	$2-1$ thr. $2-6$
3	DETAILED DESCRIPTION	$3-1$ thr. $3-18$	
4	DIAGRAMS	$4-1$ thr. $4-11$	
6	PARTS LISTS	$6-1$ thr. $6-24$	
7	MAINTENANCE	$7-1$ thr. $7-7$	

1.2 PHYSICAL DESCRIPTION 1-3
1.3 TECHNICAL DATA 1-4
1.3.1 Power Input 1-4
1.3.2 Fower Supply Outputs 1-4
1.3.3 Power Supply Protection 1-5
1.3.4 Power Failure Signal 1-5
1.3.5 Reset Line 1-5
1.3.6 Real Time Clock Pulse 1-5
1.3.7 Battery Back-Up Supplies 1-5
1.3.8 Battery Back-Up Supply Protection 1-5
1.3.9 Battery Back-Up Time 1-6
1.3.10 Battery Charge Time 1-6
1.3.11 Environmental Conditions 1-6
1.3.12 Physical Characteristics 1-6
1.4 INTERFACES 1-6
1.4.1 Power Supply to System 1-6
1.4.2 Mains Supply 1-6
1.4.3 Operator's Panel 1-6
1.4.4 Key Switch 1-7
1.4.5 Extension Racks 1-7
1.4.6 CPU Interfaces 1-7
1.4.6.1 Connector J 1-7
1.4.6.2 Connector J3 1-7
1.4.6.3 Connector J5 1-8
1.4.7 Battery Back-Up System 1-8
1.5 APPLICATION NOTES 1-8
1.6.2 Strap Settings 1-9
1.6.3 Logic Card Mounting 1-9
1.6.4 Extension Rack Connection 1-9
1.6.5 Mains Connection 1-10
1.6.6 Power Supply Accuracy 1-10
1.6.7 Mains Fuse 1-10
1.6.8 Battery Back-Up System 1-10

LIST OF ILLUSTRATIONS

Figure 1.1 M4R Rack 1-11
1.2 M4R Rack Functions 1-12
1.3 Back Pane1 PCB 1-13
1.4 Rear View of MAR Rack 1-14
1.5 Outline Drawing of M4R Rack 1-15
1.6 Real Time Clock Pulse 1-16
1.7 Connector CONN1 of CPU 1-16
1.8 M4R Regulator Card 1-17
1.9 M4R Battery Option Card 1-18
1.10 M4R Heatsink Assembly 1-19

LIST OF TABLES

Table 1.1 GP Bus Connections 1-20
1.2 Connections to Connector J5 of CPU 1-21
1.3 Extension Rack Connections IOM and IOB 1-22

1.1 IUTRODUCTIO:

The $M 4 R$ Rack is the main framework for $P 859$ systems. Up to ten logic cards (including a CPU card) can be mounted in the rack. The rack includes an $M A R$ Power Supply and an optional Battery Back-Up system for memory. The power supply provides the following supplies and signals to cards mounted in the rack:
. +5 V logic supply (+5 VL)
. +16, -5V memory supplies (+16VM, -5VM)
. $+18 \mathrm{~V},-18 \mathrm{~V}$ (nominally $+16 \mathrm{~V},-16 \mathrm{~V}$) data communication supplies $(+18 \mathrm{~V},-18 \mathrm{~V})$

- Power failure signals PWFN, RSLN

Additionally the power supply provides the CPU with a real time clock pulse RTCN.

The battery back-up system, if fitted:

- Maintains the +16VM supply in the event of a mains power failure
- Generates a +5 V memory supply $(+5 \mathrm{VM})$ and maintains it in the event of a mains failure. If the battery back-up system is not fitted, this supply is taken from the +5 VL supply.
- Generates "Battery was off" signal BAMIOFN to the CPU.

A key switch mounted on the front of the rack permits the power supply to be switched on and off and controls the operation of the battery back-up system, if fitted.

An operators control panel may be mounted on the front of the rack, see figure 1.1, which provides direct access to the CPU.

Figure 1.2 shows the basic electrical functions of the rack components.

1.2 PHYSICAL DESCRIPTION

The rack comprises an aluminium "basic mounting box" in which are mounted a power supply unit, 10 card slots for logic cards of the "Belier" format, a key switch and the back panel pcb, see figure 1.1.

The back panel pcb provides bussed interconnections between the logic cards, this is the General Purpose Bus (GP Bus). Connector $J 3$ of each logic card mates with a connector on the reverse of the back panel, the connector (and mounting slot) at the top of the rack being reserved for the CPU, see figure 1.3. The back panel is mounted on the side of the rack and protudes into the power supply unit where connections are made for the power supplies and power failure signals.

The operators panel is bolted on the front of the rack. A plug on the back of the panel mates with a 9 pin connector on a flying lead mounted on the front of the rack. A cut-out is provided in the panel for the key switch which is also mounted on the front of the rack.
Racks are mounted in a standard 19 inch cabinet and are fitted with telescopic slides for easy access.
The M4R Power Supply Unit is mounted in a box at the top of the rack. The battery back-up system (if fitted) is mounted in this same box. The ten horizontal card slots are mounted underneath the power supply. The rack is ventilated by two fans mounted at the back which draw air horizontally across the logic cards and the heatsink assembly of the power supply, see figure l.4. The rack operates on a single phase mains supply which is supplied via a socket mounted on the side of the rack.
The physical dimensions of the rack are given in the outline drawing at figure 1.5.

1.3 TECHNICAL DATA

1.3.1 POWER INPUT

Single phase mains supply at $50 \mathrm{~Hz} . \pm 2 \mathrm{~Hz}$.
or $60 \mathrm{~Hz} . \pm 3 \mathrm{~Hz}$.
Voltage $110 / 115 \mathrm{~V} \pm 10 \%$ at 8 amps.
or $220 / 240 \mathrm{~V} \pm 10 \%$ at 4 amps.

The rack is adapted to mains voltage with soldered U-links on the regulator pcb in the power supply unit, see paragraph 1.6.1.

1.3.2 POWER SUPPLY OUTPUTS (DC)

. +5VL; $+5 \mathrm{~V}, 60 \mathrm{~A}$ max. $\pm 3 \%$ stability due to 10% mains and dynamic load variation, $20-100 \%$ static load variation. Ripple and noise $\leqslant 1 \%$ ($0-30 \mathrm{MHz}$.$) .$
. $-5 \mathrm{VM} ;-5 \mathrm{~V}, 0.8 \mathrm{~A} \max . \pm 5 \%$ stability due to 10% mains and dynamic load variation, $10-100 \%$ static load variation. Ripple and noise $\leqslant 1 \%(0-30 \mathrm{MHz}$.$) .$
. $+16 \mathrm{VM} ;+16 \mathrm{~V}, 3 \mathrm{~A} \max .7 \pm 15 \%$ stability due to 10% mains and dynamic load
. $+18 \mathrm{~V} ;-16 \mathrm{~V}, 2 \mathrm{~A} \max$.-variation, $10-100 \%$ static load variation.
. $-18 \mathrm{~V} ;-16 \mathrm{~V}, 2 \mathrm{~A}$ max. Ripple and noise $\leqslant 1 \%(0-30 \mathrm{MHz}$.$) .$

1.3.3 POVER SUPPLY PROTECTIOH

- Mains supply - Protected with a slow blow fuse
. +5VL supply - Overcurrent limit between 60 and 70 amps.
- Overvoltage 1 imit between +5.5 and +7.5 V
. -5VM supply - Overcurrent limit between 0.8 and 3 amps. Overvoltage 1 imit between -5.5 and -7.5 V
. +16VM supply - No over voltage protection
. +18V supply - No over current protection but a short circuit will not
. -18V supply damage these supplies.

1.3.4 POWER FAILURE SIGNAL PUIFN

Signal active low - logical 0
0 to +0.5 V , sink current 48 mA

1.3.5 RESET LINE RSLN

Signal active low - logical 0
0 to +0.5 V , sink current 150 mA
When the mains supply is not present this signal is a true 0 volts via a relay contact to logical ground.
1.3.6 REAL TIME CLOCK PULSE RTCN

This signal is a train of $1 \mu \mathrm{~s}$ logical 0 pulses, see figure 1.6 . Logical 0-1ow

0 to +0.5 V , sink current 48 mA
1.3.7 BATTERY BACK-UP SUPPLIES - if fitted
. $+5 \mathrm{VM} ;+5 \mathrm{~V}, 8 \mathrm{~A}$ max. -3% stability due to 10% mains and dynamic load variation and $10-100 \%$ static load variation. Ripple and noise $\leqslant 1 \%$ ($0-30 \mathrm{MHz}$.$) .$
This supply is generated under normal operating conditions with mains supply on and during mains failure, see paragraph 1.3.9.
.+16 VM ; as for +16 VM supply from power supply unit, see paragraph 1.3.2.
This supply is generated only during mains failure.

1.3.8 BATTERY BACK-UP SUPPLY PROTECTION - if fitted

. +5 VM ; - Overcurrent limit between 8 and 10A.
Overvoltage 7 imit between +5.5 and +7.5 V .
.$+16 \mathrm{VM} ;-$ As for +16 VM supply from power supply unit, see paragraph 1.3.3.

1.3.9 BATTERY BACK-UP TIME

A rechargeable battery maintains the +5 VM and +16 VM supplies during mains failures for the following times:

MOS memory of 128 K words - 60 minutes
256K words - 30 minutes
512K words - 10 minutes

1.3.10 BATTERY CHARGE TIME

A completely discharged battery can be fully charged in 48 hours.
1.3.11 Environmental conditions

Max. ambient temperature range : $0-50^{\circ} \mathrm{C}$.
Max. relative humidity : 90\%

1.3.12 PHYSICAL CHARACTERISTICS (refer to figure 1.5)

- height : 266 mm
- width : 483 mm
- depth : 563 mm
- weight : < 20 kg when fully equipped (front panels, logic cards, etc.).

1.4 INTERFACES

1.4.1 POWER SUPPLY TO SYSTEM

The power supply interfaces to the rest of the system via the GP Bus on the back panel pcb (see table 1.1) and via discrete connections to connector $J 5$ of the CPU (see table 1.2). Logic signals PWFN, RSLN and RTCN are taken from the power supply (each with an individual ground lead) as twisted pairs.

1.4.2 MAINS SUPPLY

The single phase mains supply is fed via a socket mounted on the left hand side of the rack, see figure 1.4.

1.4.3 OPERATORS PANEL

The operators control panel interfaces via a 9 pin connector on a flying lead mounted on the front of the rack, (this is normally inaccessible, being covered by the operators panel). The other end of the flying lead is connected to a 9 pin socket which is discrete wired to connector $J 5$ of the CPU except the +5 V supply which is obtained from the bus at connector 33 of the CPU, see figure 4.1.

1.4.4 KEY SUITCH

Signal BATOFFN is generated by the key switch, this is discrete wired to the battery back-up system (if fitted) via a twisted pair. The key switch also operates a microswitch via a cam which generates the remote start signal to the power supply and is wired via a screened cable, see figure 4.1.

1.4.5 EXTENS ION RACKS

When used these are interfaced via two connectors IOB and IOM mounted on the bottom of the back panel (figure 1.3). The extension racks are connected via GP Bus cables (see table1.3). Refer also to paragraph 1.6.4.

1.4.6 CPU INTERFACES

The CPU interfaces to the rest of the system via connectors J1, J3 and J5 (see tables 1.1 and 1.2). The following interfaces are wired as standard on the basic M4R rack:

1.4.6.1 CONNECTOR JI

Connector J1 of the CPU is mounted on a small printed circuit card, CONN1, which is mounted to the left of the back panel pcb, see figure 1.7. On this card are also mounted connector pins for the $V 24$ interface, break request inputs either from CU cards mounted in the main rack (CPU rack) or from CU cards mounted in extension racks, and for the bus control chain OKO/OKI. These interfaces are described in detail in the CPU manual.

1.4.6.2 CONNECTOR J3

The CPU interfaces to the GP Bus at connector J3. Those signals which concern the power supply are listed in table 1.1. For further details refer to the CPU manual.

1.4.6.3 CONMECTOR J5

Connections at connector $J 5$ of the CPU to the battery back-up (BAWOFN), the power supply (RTCN) and the operators panel are shown in table 1.2. When a floating point processor is used in a system it must be mounted at slot 2. The FPP interfaces with the GP Bus at connector $J 3$ and in addition some discrete wired connections are made to the CPU at connector J5. These connections are also shown in table 1.2. Note: When a floating point processor is not used any logic card can be mounted at slot 2 .

1.4.7 BATTERY BACK-UP SYSTEM (if fitted)

The battery back-up system interfaces to the rest of the system via discrete wiring. "Battery was off" indication, BAWOFN, is wired as a twisted pair to connector $J 5$ of the CPU, see table 1.2. Battery back-up control signal, BATOFFN, is wired from the key switch as a twisted pair, see figure 4.1. Other connections to the power supply unit and the +5 VM and +16 VM supplies to the bus are made inside the power supply box.

1.5 APPLICATION NOTES

Figure 1.2 shows the basic functions of the rack. The rack has been designed for P859 systems. These systems use the CP7R type CPU, MOS memory (up to 512K words - four cards) and FRCP type operators panel. The first slot (at the top) is reserved for the CPU. Slot 2 is reserved for the floating point processor (if used). Logic cards used with the rack must be of the "Belier" format. Rack capacity may be extended with the $E 2$ extension rack. This provides $+5 \mathrm{~V},-5 \mathrm{~V}$ and +16 V supplies (from a single phase as mains input) and mounting slots for up to six control units.

1.6 INSTALLATION DATA

1.6.1 MAINS INPUT VOLTAGE

The power supply is adapted to the mains voltage with four soldered U-Tinks on the Regulator card, see figure 1.8 . The following connections should be made:

$$
\begin{aligned}
& 220 / 240 V: a-b, d-e, g-h, j-k \\
& 110-120 V: b-c, e-f, h-i, k-1
\end{aligned}
$$

The mains fuse, figure 1.4 is rated at 4 A for 220 V or 8 A for 110 V . The ventilator fan assembly mounted on the rear of the rack is chosen for the mains voltage with which it will be used. For a 220 V supply two 115 V fans are connected in series. For a 110 V supply two 115 V fans are connected in parallel.

1.6.2 STRAP SETTINGS

Two soldered U-links are fitted to the regulaton card, figure 1.8, for test purposes, TL1 and TL2. These should both be fitted for normal operation.

1.6.3 LOGIC CARD MOUNTING

All logic cards used with the rack must be securely mounted in the correct slots. Slot positions are given in the system configuration sheets. The cards are held in position with plastic release catches. All discrete wiring specific to a system must be made. For information on these refer to the Installation section of the individual manuals for each card and the system configuration sheets.

1.6.4 EXTENSION RACK CONNECTION

Extension racks are connected via two GP Bus cables connected at connectors IOB and IOM at the bottom of the back panel pcb. The GP Bus cables are of two standard lengths, 3 metres and 15 metres. The following rules must be observed when connecting extension racks:

1) Bus cables are connected between the connectors at the bottom of the back panel pcb of the CPU rack to the connectors at the bottom of the back panel of the extension rack.
For subsequent extension racks connected in a chain, the bus cables are connected between the connectors at the top of the back panel of the previous rack to those at the bottom of the following rack.
2) The cable must be connected so that pin 50 of each connector is connected to the same wire of the cable. A red line printed on the cable may be used as a reference.
3) The last extension rack in a chain must have a terminator network plugged into the connectors at the top of the back panel pcb.
4) Maximum cable length (between CPU rack and the last extension rack in a chain) = 15 metres.
5) Maximum number of extension racks used $=7$; however, this is limited to 5 because of the standard cable length of 3 metres.
6) Extension racks must be equally spaced along the bus cable.
7) Maximum number of logic cards used in each extension rack $=6$. These must all be control unit cards.
8) The extension racks may only be used with slave control units. Cards which are system masters must be mounted in the CPU rack.

1.6.5 MAIAS COHMECTIOH

The single phase mains supply is connected via a socket mounted on the right hand side of the rack. The mains supply must comply with the rating plate mounted near the mains socket. Before connecting the mains supply set the key switch on the front of the rack to position "OFF".

1.6.5 POWER SUPPLY ACCURACY

The power supplies are set up to the specified tolerances (nara. 1.3) in the factory before dispatch. Any discrepancy may be due to an inaccurate mains supply, this should be checked before any adjustment is made. Information on power supply adjustment is given in chapter 7 of this manual.

1.6.7 MAINS FUSE

The single mains fuse is mounted on the right hand side of the rack near the mains socket, see figure 1.4. This is a slow blow fuse rated at 4 amps for 220 V supply or 8 amps for a 110 V supply.

1.6.8 BATTERY BACK-UP SYSTEM (if fitted)

No installation procedures are necessary for this system. Connections to the Battery card are made at system installation time. Figure 1.9 shows the connector position on this card. Information on adjustment of the +5 VM supply (if necessary) is given in chapter 7 of this manual.

Figure 1.1 M4R RACK

Figure 1.2 M4R RACK FUNCTIONS

Figure 1.3 BACK PANEL PCB (GP BUS)

Figure 1.4 REAR VIEW OF MAR RACK

Figure 1.5 OUTLINE DRAWING OF MAR RACK

figure 1.6 REAL TIME CLOCK PULSE

Figure 1.7 CONNECTOR CONN 1 (J1) FOR CPU

Note: Each of the three strip connectors (III)) is shown with
one pin position blacked out. These pins are cut off to provide a locator which mates with the key way on the associated Berg flying lead connector.

[^0]

Figure 1.10 M4R HEATSINK ASSEMBLY

$\begin{aligned} & \text { Connector J3 } \\ & \text { Pin No. (on } \\ & \text { back panel) } \end{aligned}$	Panel Connector Pin No. (where used)	Signal	Function
3 A01		+18V	Data comm. and teletype supply
3A02-5		--	--
3 306		+16VM	Memory (inhibit amps) supply
3 A07		OV	Ground (logical)
3A08-16		--	--
3 A17		PWFN	Power Failure Signal
3 A18		OV	Ground (logical)
3A19,20	4	+5VL	Logic Supply
3A21, 22		OV	Ground (logical)
3 A 23		--	--
3A24,25	3	OV	Ground (logical)
3A26-43		--	--
3 B 01		-18V	Data comm. and teletype supply
3B02		OV	Ground (mechanical)
3B03-5		--	--
3B06		+16VM	Memory (inhibit amps) supply
$3 \mathrm{B07}$		OV	Ground (logical)
3B08-16		--	--
3 B 17		RSLN	Reset Signal
3 B 18		-5VM	Memory Supply
3B19,20		+5VL	Logic Supply
3B21,22		OV	Ground (logical)
3 B 23		+5VM	Memory Supply
3 B 24		--	--
3 B 25		+16VM	Memory (inhibit amps) supply
3B26-43		--	--

Table 1.1 GP BUS CONNECTIONS (USED BY POWER SUPPLY UNIT)

Connector J5-Slot 1 (for CPU) Pin No.	Connector J5-Slot 2 (for FPP) Pin No.	Panel Connector Pin llo.	Signal	Signal Source
5A01-10	--	--	--	--
5 A11	5 Al1	--	FLOACT	CPU
5 Al2	5 Al2	--	BSYCPUN	CPU
5A13	5A13	--	GFECHT	CPU
5A14	5A14	--	DONEF	FPP
5 A15	5 A15	--	FLOCR1	FPP
5A16	--	--	--	--
5A17	5A17	--	OSC	CPU
5A18-29	--	--	--	--
5A30	--	1	LOCK	Panel
5 A31	--	6	SDPM	Panel
5A32,33	--	--	--	
5A34	--	2	SDMP	CPU
5 A35	--	7	RTCE	Panel
5A36,37	--	--	--	--
5801-11	--	--	--	--
$5 \mathrm{B12}$	5B12	--	PMFN	CPU
5 Bl 3	5B13	--	BOFFN	CPU
$5 \mathrm{B14}$	5B14	--	FLOCRO	FPP
5 B 15	5B15	--	FPPABS	FPP
5B16-19	--	--	--	--
5B20	5B20	--	PAFN	CPU
5B21,22	--	--	--	--
5B23	--	--	BAWOFN	
5 B 24	--	--	--	
5B25	--	--	RTCN	Power Supply
5B26-30	--	-	--	-- suply
$5 \mathrm{S31}{ }^{\text {5 }}$	--	3	OV	Power Supply
5B32,33	--	--	--	--
5B34	--	8	RESETN	CPU
5B35	--	5	+12V	CPU
5 B 36	--	--	--	--
5B37	--	9	-12V	CPU

Table 1.2 CONNECTIONS TO CONNECTOR J5 OF CPU (MADE IN BASIC RACK)

$\begin{aligned} & \text { Connector IOM } \\ & \text { Pin Ilo. } \end{aligned}$	Signal	Function
$\left[\begin{array}{l} 1-21 \text { (odd nos.) } \\ 23,25,26,28, \\ 29,31,32,34, \\ 35,37,38,40, \\ 41,43,45,47, \\ 49 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 24 \\ 27 \\ 30 \\ 33 \\ 39 \\ 42,44,46,48 \\ 50 \end{array}\right.$	$\left.\begin{array}{l} \text { MA } \\ \text { MC } \\ \\ \text { MAD04 } \\ \text { MAD03 } \\ \text { MAD08 } \\ \text { MADD9 } \\ \text { MAD10 } \\ \text { MAD11 } \\ \text { MAD12 } \\ \text { MAD13 } \\ \text { MAD14 } \\ \text { MAD15 } \end{array}\right]$	Ground for Address Lines Ground for Command Lines Address/Function Lines Accept Command Master Clear Exchange [Peripheral Controller to Master Timing - Master to Peripheral Controller Signals - Master to External Register Spare Logic Power Supply
Connector IOB Pin No.	Signal	Function
```1,3 5-37 (odd nos.) 39-49 (odd nos.) 2 6-36 (even nos.) 38 40 4 2 4 4 4 6 4 8 50```	$\left.\begin{array}{l}\text { MC } \\ \text { MB } \\ \text { MC } \\ \text { RSLN } \\ \text { PWFN } \\ \text { BIO15N-BIOON } \\ \text { BIEC5 } \\ \text { SCEIN } \\ \text { BIEC3 } \\ \text { BIEC4 } \\ \text { BIEC1 } \\ \text { BIEC2 } \\ \text { BIEC0 }\end{array}\right]$	Ground for Command Lines   Ground for BIO Lines   Ground for Command Lines   Reset from Power Supply   Power Failure Signal   Bi-directional Data Lines   Encoded Interrupt Line (1sb)   Scan Interrupt Line   Encoded Interrupt Lines

Table 1.3 EXTENSION RACK CONNECTIONS IOM AND IOB
SECTION 2.1 GENERAL ..... PAGE 2-2
2.2 POWER SUPPLIES ..... 2-2
2.3 POUER FAILURE AND RESET SIGNALS ..... $2-2$
2.4 REAL TIME CLOCK SIGNAL ..... 2-3
2.5 BATTERY BACK-UP SYSTEM ..... 2-3
2.6 OPERATORS KEYSWITCH ..... $2-4$
2.7 LED INDICATORS ..... 2-4
LIST OF ILLUSTRATIONS
FIGURE 2.1 BLOCK DIAGRAM OF M4R POWER SUPPLY AND ..... 2-5
BATTERY BACK-UP
2.2 TIMING OF POWER SUPPLY LOGIC SIGNALS ..... $2-6$

### 2.1 GEIERAL

Figure 2.1 shows the main functions of the power supply and battery back-up (if fitted). The power supply is suitched on with the Remote Start signal from the microswitch which is operated by the keyswitch mounted on the front of the rack. The Battery Back-Up system is controlled by signal BATOFFN which is generated by the keyswitch.

The power supply provides the following outputs:

Signal function	Signal llame at   Power Supply	Signal Name at   GP bus
+5 V at 60A, logic supply	+5 VL	
-5 V at 0.8A, memory supply	-5 VL	
+16 V at 3A, memory supply	+5 VL	
+18 V (nominally +16V) at 2A, data comm. supply	+16 VL	-5 VM
-18 V (nominally -16V) at 2A, data comm. supply	-16 VL	+16 VM
Power Failure Signal	PIIFN	+18 V
Reset Signal	RSLM	-18 V
Real Time Clock Signal	RTCN	RSIFM

The battery back-up system provides the following outputs:

Signal Function	Signal Hame
+16 V at 3A (during mains power failure only)	+16 VM
+5 V at 8 A (during normal operation with power	+5 VM
"Battery was off" indication	

### 2.2 POUER SUPPLIES

Specifications for the power supplies are given in paragraph 1.3 of chapter 1 of this manual.

### 2.3 POUER FAILURE AND RESET SIGIIALS

Signals PUFH and RSLII are generated during the power on/off sequences. Specifications for the signals are given in paragraph 1.3. Both signals are distributed to the rest of the system via the GP Bus. The timing of the signals is shown in figure 2.2. Both signals are set inactive high when the power supplies have stabilised after switch on.

The power off sequence is for normal switch off or for a mains power fajlure for longer than 10 ms . Shorter mains failures will not cause the power off sequence. Once PWFN goes low the sequence will continue to set RSLH low. A failure in any of the $+5 \mathrm{VL},+16 \mathrm{VL}$ or +24 V Aux supplies will also cause PWFN and RSLN to go low though the other power supplies will continue to function normally. Note: If the +16 VL supply fails then the +5 VL supply will also fail since this is generated from the -16VL supply. A failure in the -5 VL supply (the rest of the power supply operating normally) will cause signal RSLN only to go low. A complete description of the sequencing logic is given in chapter 3 .

### 2.4 REAL TIME CLOCK SIGNAL

Signal RTCN is generated all the time that the mains supply is active. The signal is a train of negative pulses of lus duration, see paragraph 1.3.6. The signal is sent to the CPU where it is enabled by signal RTCE from the operators control panel.

### 2.5 BATTERY BACK-UP SYSTEM

This is an optional system which when fitted maintains the +16 VM memory supply in the event of a mains power failure and generates the $+5 V M$ memory supply during normal operation or during a power failure. Note: When the battery back-up system is not fitted, the +5 VM supply is derived from the +5 VL supply via a wired connection.

The system comprises a battery which provides the +16 VM supply during a power failure and a pcb which provides the control functions of the battery back-up system during normal operation, including the recharging of a discharged battery.
Under normal operating conditions the +16 VM supply is available from the power supply. This provides the input to the +5 VM power supply (see figure 2.1). The battery charger charges the battery from the +24 V Aux supply. Signal RSLN is then high (inactive) and the relay operated by battery back-up control is de-energised - ie. its contact is open and the battery is isolated from the rest of the system.
When the system was initially switched on, BAWOFN was set low. When a power failure occurs RSLN goes low which resets BAWOFN high. At the same time the battery back-up control energises the relay and the battery provides the +16 VM supply to the bus and to the +5 VM supply. The battery back-up control then monitors the battery voltage during the power failure. If the mains supply is switched back on before the battery is discharged, BAWOFN remains high indicating to the CPU that no loss of power was experienced by the memory.

If the battery voltage drops below a critical level during the power failure the relay is de-energised (to avoid damage to the battery) and the supplies to the battery card are lost. When the mains is switched back on BANOFN is set low again, which indicates to the CPU that the battery supply was not maintained during the power failure.

## 2. 6 OPERATOR'S KEYSUITCH

This is a four position keyswitch on the front of the rack. The switch itself generates signal BATOFFN. When the switch is in the "OFF" position BATOFFN is low which indicates to the battery back-up control that the battery is to be isolated from the system. When the keyswitch is in either of the "ON" positions or "MAINT", BATOFFN is high and the battery back-up operates as described in paragraph 2.5. The keyswitch also operates a microswitch which generates the remote control start signal to the power supply. When the keyswitch is in either of the "ON" positions the power supply is switched on. The keyswitch thus performs the following functions:

Keyswitch   position	Functions
OFF -	Power Supply off, Battery Back-Up off, key can be removed from keyswitch
$0 N$	Power Supply on, Battery Back-Up on, key cannot be removed from keyswitch
$\mathrm{ON} \quad-$	Power Supply on, Battery Back-Up on, key can be removed from keyswitch
MAINT -	Power Supply off, Battery Back-Up on, key cannot be removed from (memory is maintained) keyswitch



KEYSWITCH POSITIONS

### 2.7 LED INDICATORS

When the rack is moved forward on its telescopic slides out of the cabinet, four LED indicators can be seen (see figure 1.4). These monitor (from left to right) $+16 \mathrm{VL},-16 \mathrm{VL},-5 \mathrm{VL},+5 \mathrm{VL}$ supplies and RSLN rest signal. All four LED's should be lit for normal operation (ie. supplies active).


Figure 2.1 BLOCK DIAGRAM OF M4R POHER SUPPLY AND BATTERY BACK-UP


Figure 2.2 timing of power supply Logic signals
SECTION ..... 3.1
POWER SUPPLY INPUT CIRCUITS ..... PAGE 3-3
3.1.1 Mains Supply ..... 3-3
3.1.2 Remote Start ..... 3-3
3.1.3 HT Auxiliary Supply ..... 3-3
3.1.4 +24V Auxiliary Supply ..... 3-3
3.2 PRINCIPLES OF OPERATION OF SWITCHED ..... 3-4
MODE POWER SUPPLY
3.3 +5VL REGULATOR AND POVER SUPPLY ..... 3-4
3.3.1 Power Supply ..... 3-4
3.3.2 Regulator ..... 3-4
3.3.3 Feedback Loop ..... 3-5
3.3.4 Soft Start Sequence ..... 3-5
3.3.5 Short Circuit Protection ..... 3-5
3.3.6 Feedback Loop Open Circuit Protection ..... 3-6
3.3.7 Overcurrent Protection ..... 3-6
3.3.8 Supply Failure Protection ..... 3-6
3.3.9 Overvoltage Protection ..... 3-6
3.3.10 16V Synchronising Signal ..... 3-7
3.416 VOLT REGULATOR AND POWER SUPPLIES ..... 3-7
3.4.1 Power Supplies ..... 3-7
3.4.2 Regulator ..... 3-7
$3.5 \quad-5 V M$ REGULATOR AND POWER SUPPLY ..... 3-8
3.5.1 Power Supply ..... 3-8
3.5.2 Regulator ..... 3-8
3.6 POWER SEQUENCE LOGIC ..... 3-8
3.6.1 Power On Sequence ..... 3-8
3.6.2 Power Off Sequence ..... 3-9
3.6.3 Real Time Clock Pulse ..... 3-9
SECTION 3.7 BATTERY BACK-UP SYSTEM ..... PAGE 3-10
3.7 .1 General ..... 3-10
3.7.2 +5 VM Regulator and Power Supply ..... 3-10
3.7.2.1 Power Supply ..... 3-10
3.7.2.2 Regulator ..... 3-10
3.7.3 Battery Back-Up Control ..... 3-11
3.7.4 Battery Charger and Control ..... 3-11
3.7.5 Battery Was Off Indication ..... 3-12
LIST OF ILLUSTRATIONS
FIGURE 3.1 Basic Switched Mode Power Supply ..... 3-13
3.2 Operation of TDA1060 Voltage Regulator ..... 3-14
(a) Soft Start Sequence ..... 3-14
(b) Short Circuit/Open Circuit Protection ..... 3-14
(c) Overcurrent Protection ..... 3-14
3.3 Timing Diagram for M4R Logic Signals ..... 3-15
3.4 Battery Charge Control ..... 3-16
3.5 Battery Was Off Indication ..... 3-17
LIST OF TABLES
TABLE 3.1 List of Integrated Circuits Used ..... 3-18

### 3.1.1 MAINS SUPPLY (Figure 4.1)

The single phase mains supply is input to the unit via a mains socket. The supply is fused and filtered and input to the M4R Regulator Card at connectors $P$ and $N$.

### 3.1.2 REMOTE CONTROL START (Figure 4.2)

The mains supply is switched on with the key switch. With this switch set to either of the "ON" positions a cam closes the contacts of a microswitch which puts a short circuit across connectors $P$ and $S$ of the regulator card. This gates on triac Q313 which energises the regulator card and provides the ventilator fans supply at connector $V$. The mains is supplied initially via surge limit resistor R300 to the HT Auxiliary supply circuit and to transformer TR7.

### 3.1.3 HT AUXILIARY SUPPLY (Figure 4.2)

When the unit is used with a mains supply of $220 / 240 \mathrm{~V}$ the soldered U-links in this circuit are as shown in the diagram. Diodes CR300-303 operate as a diode bridge which rectify the mains supply. The output is smoothed by C300-303 to provide an HT supply of approximately 300 V dc which is used by the +5 V and +16 V power supplies. When the unit is used with a mains supply of $110 / 115 \mathrm{~V}$ the U-links are soldered between points b - c and e - f. In this case diodes CR300-303 and capacitors C300-303 operate as a voltage-doubler circuit. In this case the neutral of the mains supply is connected to the centre point of the network C301-303/R305,306. When the Line (P) is positive with respect to the Neutral (N) in the mains supply capacitors C300,301 are charged positively wrt the centre point via CR300,301. When $P$ is negative wrt $N$ capacitors C302,303 are charged negatively wrt the centre point. The total voltage developped between +HT and -HT is again approximately 300 Vdc . Resistors R305,306 balance the leakage resistance of the capacitors in the network.

### 3.1.4 +24V AUXILIARY SUPPLY (Figure 4.2)

The primary of transformer TR7 comprises two windings. When the unit is used with $220 / 240 \mathrm{~V}$ the windings are connected in series across the mains via the two soldered U-links as shown in the diagram. When used with $110 / 115 \mathrm{~V}$ the U-links are soldered between points $h$ - i and $k-1$ in which case the two windings are connected in parallel across the mains. The secondary of TR7 at connections 8,9 is rectified and smoothed to provide the $+24 V d c$ auxiliary supply used internally by the regulator card and by the battery card, if fitted. This supply then energises relay Kl which short circuits surge limit resistor R300.

### 3.2 PRIHCIPLES OF OPERATION OF SHITCHED MODE POUER SUPPLY

Figure 3.1. shows the basic operation of a switched mode power supply. This type of circuit is used in the $+5 \mathrm{VL},+16 \mathrm{VM},+16 \mathrm{VL}$ and -16 VL supplies. A transistor switching signal generated in the regulator circuit alternately switches Q1 on and off. When Q1 is switched on current flows from the HT through winding 1 of TRI primary, inducing a magnetic field in TRI (figure $3.1(a)$. This induces an emf in TR1 secondary (figure $3.1(b)$. CR6 is forward biased and current flows through Ll to the load increasing linearly. Capacitor C3 is charged and energy is stored in $L 1$.
When Q1 is switched off current stops flowing from the HT and the polarity of the voltage across winding 1 of $T R 1$ is reversed. Thus the emf at TRI secondary is reversed and CR6 is reversed biased. The polarity of the voltage across Ll is also reversed and the stored energy from $L 1$ is passed to the load via forward biased CR7. At the same time C3 discharges through the load. The total load current which is the sum of the capacitor and inductor currents decreases linearly.
The collapsing magnetic field in TR1 generates a reverse emf in winding 1 which could easily destroy Q1 so winding 2 is used as a demagnetisation winding. This has the same number of turns as winding 1. When the reverse emf acros windings 1 and 2 (and hence across Q1) increases above twice the HT voltage CR4 becomes forward biased and winding 2 discharges into the capacitors of the HT supply. The slope of the increasing reverse emf is controlled by charging Cl via forward biased CR5. When Q1 is switched on again C1 discharges via R1 through Q1. Diodes CRI-3 with R4 and C3 ensure that the base of Q1 is negative with respect to the emitter when it is switched off.

## $3.3+5 V L$ REGULATOR AND POUER SUPPLY (refer to figure 4.3)

### 3.3.1 POWER SUPPLY

The power supply is of the switched mode type as described at paragraph 3.2 above. The output is smoothed by C1 - C6 and fed to the bus components C11/R2 across CR1 and C12/R3 across CR2 limit switching spikes in these diodes. The supply is monitored by an LED indicator CR212 which can be seen from the right hand side of the rack. The LED is lit when the supply is active.

### 3.3.2 REGULATOR

The power supply switching transistor $Q 1$ is controlled by a variable duty cycle, constant frequency switching signal generated in the voltage regulator chip TDA 1060 (ICI).

The output pulses from the chip are produced by comparing an internally generated saw tooth waveform with a duty cycle voltage at the input to a pulse width modulator (PWM). The duty cycle of the output pulses increases with this voltage and the mean output voltage of the power supply increases with the duty cycle. The maximum level of duty cycle ( $\delta$ max) is set by the voltage at pin 6 which is derived from an internal stabilised power supply $V z(8.5 \mathrm{~V})$ at pin 2 across R19/R20. During normal operation this voltage is constant and $\delta$ max is $45 \%$. The frequency of the saw tooth generator, and hence of the output pulses, is fixed by timing components $\mathrm{R} 21 / \mathrm{C} 21$ at 40 KHz . The saw tooth waveform can be monitored at pin 8 of the chip. The pulses from the PWM are passed via an output stage to pin 15 of the chip. Pulses switch transistor 04 which passes a constant current through the primary of TR2. When the signal at pin 15 is high (inactive) Q4 is switched on and energy is stored in TR2. When Q4 is switched off energy flows from the secondary of TR2 via R8/C16 to switch on Q1. When Q4 is switched on again the base of Q1 goes negative and switches off. The constant current source is provided by $Q 2,3$ and 13. Transistor $Q 13$ develops a constant voltage across R10 which passes a constant current of 200 mA through $Q 2$ to TR2 primary when switched by Q4.

### 3.3.3 FEEDBACK LOOP

The chip monitors, at pin 3 , the output of the power supply ( +5 V sense) developped across potentiometer Pl, compares it with an internally derived reference voltage (3.72V) at the input to an error amplifier and adjusts the duty cycle voltage accordingly. Thus P1 is used to adjust the power supply output voltage since it forms part of the feedback loop. The gain of this loop is determined by R22/R23 which are connected around the error amplifier at pin 4.

### 3.3.4 SOFT START SEQUENCE

Before the supply to the chip is switched on C20 connected at pin 6 is discharged. During a start up sequence after the +24 V Aux supply becomes active capacitor $C 20$ slowly charges from $V z$ at pin 2. Thus the duty cycle slowly increases from $0 \%$ to provide a soft start, see figure 3.2(a).

### 3.3.5 SHORT CIRCUIT PROTECTION

If the voltage at pin 3 becomes less than 600 mV (eg. a short circuit on the power supply output) the chip internally reduces the duty cycle voltage at the PVM to a value corresponding to $=10 \%$, see figure $3.2(b)$. The duty cycle remains at $10 \%$ until the short circuit is removed.

If the feedback loop is open circuited (ie. loss of +5 V sense) the voltage at pin 3 is left floating. The chip internally simulates a high feedback voltage which reduces the duty cycle to zero (ie. no pulses). This condition is maintained until the open circuit fault is corrected, see figure $3.2(b)$.

### 3.3.7 OVERCURRENT PROTECTION

Current flow in the power supply is monitored by transformer TR3. The secondary of $T R 3$ is half wave rectified by CR8 and applied to pin 11 of ICl via potentiometer $P 2$. If the voltage at pin 11 rises above 480 mV the chip immediately limits current flow by cutting short the output pulse. This cycle by cycle current limit continues until the overcurrent is reduced or until the voltage at pin 11 goes higher than 600 mV . At this point the chip immediately inhibits the output stage (which inhibits all pulses) and discharges capacitor C20 at pin 6. When the voltage on pin 6 is reduced to 600 mV the output stage is enabled and $C 6$ is allowed to recharge from $V z$ at pin 2 and the chip attempts a soft start sequence. The chip continues in this "hick-up" mode until the overcurrent condition is removed, see figure $3.2(c)$.

Due to its storage effect, transistor Q1 is switched on for a period of time slightly longer than the switching pulse. This means that under normal operating conditions when the voltage at pin 11 increases above480mV and the output pulse is switched off, the transistor continues to conduct and the 600 mV level will be reached at pin 11. Thus any overcurrent condition will result in the "hick-up" mode. The overcurrent limit is adjusted with potentiometer P 2 .

### 3.3.8 SUPPLY FAILURE PROTECTION

If the chip input supply at pin 1 reduces below 10.5 V the output stage is inhibited and capacitor C 20 is discharged. The chip remains in this state until the input voltage increases above 10.5 V at which time the chip commences a soft start sequence.

### 3.3.9 OVERVOLTAGE PROTECTION

The power supply output voltage is monitored by a crowbar circuit mounted on the +5 Volt Filter Card. If the supply voltage increases above the specification transistor 0502 switches on and fires Thyristor 0501 which short circuits the power supply.

### 3.3.10 16V SYNCHRONISING SIGNAL

The sawtooth waveform at pin 8 of ICl is compared with a fixed reference voltage at the input to comparator IC208. The square wave output at pin 1 is used as a synchronising signal for the 16 V power supply.

### 3.416 VOLT REGULATOR AND POWER SUPPLIES (refer to figure 4.4)

### 3.4.1 POWER SUPPLIES

The power supply is of the switched mode type as described at paragraph 3.2 above. The power supply comprises a single primary circuit and two secondary circuits. The output at NS1/0 of TR4 provides the +18 V (named +16VL) supply and, via diode CR110, the +16VM supply. This diode isolates the battery back-up system (if fitted), which is connected to the +16 VM line, from the +18 V supply during a mains failure. The output at $11 / 12$ of TR4 provides the -18 V (named -16VL) supply. The three supplies are fed to the bus via smoothing components mounted on the 16 Volt Filter Card. The +16VL supply only is monitored by LED indicator CR213 which can be seen from the right hand side of the rack and is lit if the supply is active.

### 3.4.2 REGULATOR

The operation of the regulator is similar to that for the +5 VL supply with the following differences.
The frequency of the oscillator in the voltage regulator chip IC2 is set with components R124/C116 at approx. 50 KHz . This oscillator is then synchronised with the slightly lower frequency synchronising signal from the +5 VL supply. Transistor Q8 switches current from a constant current source provided by Q6,7,CR108 ( 200 mA ) via TR5. This controls switching transistor 05 which provides the primary current for all three power supplies. The feedback signal is taken from the +16VM supply, this is therefore the best regulated of the three, via potentiometer P4 which controls the output voltage. When there is a short circuit on the +16 VM the duty cycle of the switching transistor will be reduced to $10 \%$. A short circuit on either of the other supplies will be seen by IC2 as an overcurrent. Current is monitored by TR 6 which monitors the total of currents in the $+16 \mathrm{VM},+18 \mathrm{~V}(+16 \mathrm{VL}),-18 \mathrm{~V}(-16 \mathrm{VL}),-5 \mathrm{VM}$ (supplied from +16 VL ) and +5 VM (supplied from +16 VM on battery card if fitted). Overcurrent limit is adjusted, with P3, to operate when the total load current is equivalent to a current of 14 A in the +16 VM supply. There is no overvoltage protection on any of the supplies but Zener diode CR114 across the -16 VL supply acts as a bleeder to limit the output voltage of this supply to about 20 V when the supply is operating at low current.

## 3.5 -5VM REGULATOR AND POHER SUPPLY (see figure 4.5)

### 3.5.1 POUER SUPPLY

The power supply is of the switched mode type. The +16VL supply is switched with transistors Q401,402 into inductance L401. When Q401 is switched on current flows from the +16VL supply and energy is stored in L401. CR401 is reversed biased. When $Q 401$ is switched off the energy from L401 flows into the load via CR401 which is now forward biased. The supply is smoothed by C407-409. The supply is monitored by an LED indicator CR214 which can be seen from the right hand of the rack and is lit when the supply is active.

### 3.5.2 REGULATOR

The operation of the regulator is similar to that of the +5 VL supply with the following differences:
The feedback voltage ( -5 V sense) is initially compared at the input to chip IC402 with a reference voltage generated internally by the chip to produce a positive feedback signal to IC401. Power supply output voltage is adjusted with potentiometer P401. The switching signal from IC401 is applied directly to the switching transistors Q402,401. Current is monitored with TR401. Overcurrent limit is adjusted with potentiometer P402. The power supply output voltage is limited by Zener diode CR403 which starts conducting at about 6.8 V .

### 3.6 POWER SEQUENCE LOGIC (see figure 4.2)

### 3.6.1 POWER ON SEQUENCE

Figure 3.3 shows the timing of logic signals during the Power On and Power Off sequences. As soon as the mains supply is switched on the +24 V Aux supplies rises and the individual supplies begin to rise. The mains waveform at connectors 6 and 7 of transformer TR7 is rectified and smoothed to provide a mains detect signal which is monitored at pin 5 of IC201. It is compared with a reference voltage generated internally by the chip across potentiometer P5 and resistor R211. If the mains supply is healthy and when the +5VL supply reaches nominal, the output of IC201 at pin 9 goes high. Thus pin 4 of IC205 goes high. When the +16VL supply reaches nominal pin 5 of IC205 also goes high and signal DET goes low. This sets signal RLY high and switches on transistor Q11 in the $\pm 5 \mathrm{~V}$ detector circuit. If the -5 VL supply is active transistor Q10 is also switched on and relay K 201 is energised. This opens a contact across RSLN. When DET goes low it triggers monostable IC202 and DELAYl goes high and after a delay of approx. 100ns (due to R210/C216) DLY1 goes low (this delay masks the propogation time of the monostable).

At the same time DELAYIN goes low to reset signal DELAY2. The monostable produces a pulse of 1,5 seconds duration, at the end of which time DELAY1 is reset low and DELl goes high. After a delay of approx. 100 ns (due to R216/C215) DLY2 goes high, DEL2 goes low and transistor Q12 is switched off to set RSLN high. 6ms after DELI (due to R209/C205), PWFN also goes high.

### 3.6.2 POWER OFF SEQUENCE

If the mains supply is switched off the mains detect signal at pin 5 of IC201 starts to fall. After 10 ms it falls sufficiently so that the comparator amplifier switches state and pin 9 of IC201 goes low. This time period is adjusted with potentiometer $P 5$ which controls the comparator voltage at pin 4 of IC201. Also a failure in the +24 V Aux or +5 VL supply will cause the output of IC201 to go low. A failure in the +16 VL supply will result in pin 5 of IC205 going low. Thus any of these supply failures will be detected by signal DET going high. After a delay of approx. 100 ns DLY1 goes high, DEL1 goes low and PWFN goes low. DEL1 going low triggers monostable IC202 setting DELAY2 high and after a delay of approx. 100 ns DLY2 goes low (this delay masks the propogation time of the monostable). The monostable produces a pulse of 3 ms duration, at the end of which time DELAY2 is reset low, DEL2 goes high and transistor Q12 is switched on to set RSLN low. When DEL2 goes high, signal RLY goes low to switch off transistor Q11. Relay K201 then de-energises and its contact grounds RSLN.
Note: Since transistor Q12 operates after relay K201 for power on and before K201 for power off, contact bounce is masked from the RSLN line. A failure in the -5VL supply causes transistor Q10 to switch off. K201 de-energises and RSLN is grounded. PWFN remains high under these conditions. RSLN is monitored with an LED indicator visible from the right hand side of the rack. This LED, CR211, is lit when RSLN is high (during power on).

### 3.6.3 REAL TIME CLOCK PULSE

The Real Time Clock Pulse RTCN is generated by pulse shaping the mains waveform. The waveform at tap 6 of transformer TR7 is a halfwave rectified signal with a frequency equal to that of the mains. It is applied via a filter network to the input of a comparator amplifier IC207 which provides a square wave output with the same frequency. Each low to high transition of the square wave triggers the monostable IC203 which produces an output pulse of lus duration. This time is determined by timing components R202/C211, see figure 1.6. The output from the monostable is then inverted and output to the CPU as a twisted pair with an associated ground lead, see figure 4.1.

### 3.7.1 GENERAL

This system provides a battery supply to maintain the +16 VM supply to the memory in the event of mains power failures. The system also generates a +5 VM memory supply from the +16 VM supply (with mains power on or off) and provides a battery charger which charges the battery during normal operation with mains power on. When a rack is provided without this battery back-up option the +5 VM supply is taken via a link from the +5 VL supply, however in this case the +5 VM supply (nor the +16VM supply) will not be maintained during power failure. The battery back-up system will maintain the two power supplies until the battery is discharged at which time the batttery will be isolated from the system. If this happens signal BAWOFN indicates to the CPU, when the mains supply is switched on again, that the power supplies were not maintained during the power failure.

### 3.7.2 +5VM REGULATOR AND POWER SUPPLY

### 3.7.2.1 POWER SUPPLY

The power supply is of the switched mode type. The +16VM supply is switched with transistor Q518. When Q518 is switched on CR509 is reversed biased and current flows from the +16 VM supply through L4 to the load. Capacitors C501, 503-505 are charged and energy is stored in L4. When Q518 is switched off energy flows from L4 into the load via CR509 now forward biased. At the same time C501, 503-505 discharge into the load, the total load current being the sum of the capacitor and inductor currents. The current drawn from the +16 VM supply is smoothed by a filter comprising C500 and inductance $L 5$ to limit noise.

### 3.7.2.2 REGULATOR

The operation of the regulator is similar to that of the +5 VL supply with the following differences:
The switching signal output from the voltage regulator chip IC512 switches transistor $\mathbf{Q} 519$ which passes current from the +16 VM supply through the primary of TR9 via resistors R533/541. The secondary of TR9 drives the switching transistor Q518. The feedback signal is taken from the output of the power supply ( +5 VM sense) via P5 controls the output voltage. TR8 monitors the total current passes by the power supply and regulator circuits. Overcurrent limit is adjusted with P6. The power supply output voltage is limited by Zener diode CR511 which starts conducting at about 6.8 V .

With mains power switched on the +16VM supply is available at the battery card. The voltage developped across $R 500 / 501$ is monitored by comparator amplifier IC511 at pin 3 and compared with a stabilised voltage ( $6,2 \mathrm{~V}$ ) across P 7 at pin 2. Under normal operating conditions the level at the base of 0515 is high due to the output of IC511 but this point is held low by signal RSLN, BATOFFN from the key switch is open circuit. Transistors Q515/516 are then switched off and K502 is de-energised. If a power failure occurs RSLN goes low, the base of 0515 goes high and relay K 502 is energised which connects the battery to the +16 VM line. Thus the +16VM supply is maintained during the power failure. As the battery discharges its voltage falls. When the critical value is reached the output from the comparator IC511 goes low, Q515/516 switch off, K502 is de-energised and the battery is disconnected from the +16 VM line. The critical value (between +12 V and +13 V ) is adjusted with P7. When the operators key switch is in the OFF position, only, signal BATOFFN is short circuited to logical ground. The base of $\mathbf{Q} 515$ is then held $10 w$ and relay K 502 de-energised.

### 3.7.4 BATTERY CHARGER AND CONTROL

The battery is charged from the $+24 V$ Aux supply (while mains power is switched on). The battery voltage is monitored (Battery Voltage Sense) at pin 6 of comparator IC511 and is compared with a reference voltage ( $6,2 \mathrm{~V}$ ) stabilised by CR508. The comparator operates on a hysteresis loop, provided by R509, so that its output goes high or low for different battery voltages. When the +24 V Aux supply is available transistors $0521 / 522$ are switched on, these pass the charging current to the battery via CR510. Initially with a battery voltage of say, 13 V , the output from IC511 at pin 7 is high and transistors Q514/520 are switched on . Q520 passes a charging current of 25 mA via R537-539, see figure 3.4. As the battery charges its voltage rises, when this reaches $17,15 \mathrm{~V}$ (typical) IC511 switched and transistors Q514/520 are switched off. A charging current of 5 mA is then passed by R518. Under these conditions the battery voltage decreases until $16,10 \mathrm{~V}$ (typical) at which point IC511 switches back and Q514/520 are switched on again. This cycle repeats itself but slows down as full charge is reached, and eventually stabilises with $0514 / 520$ switched off and the battery supply is maintained with the trickle charge of 5 mA .
Note: Figure 3.4 is not drawn to scale. The initial switching time of the transistor is several minutes while the total charging time may be as long as 48 hours.

### 3.7.5 BATTERY UAS OFF INDICATION

Timer chip type NE555 (IC509) is used as a flip-f?op to generate signal BAMOFN. The flip-flop has two states:
. Set (pin 3 high, BAMOFN low) when the voltage on the trigger input, pin 2, goes lower than one third of the supply voltage Vcc, pin 8. Note: when IC509 is switched on it is always switched on in this triggered state.
. Reset (pin 3 low, BAWOFN high) when pin 4 (Reset) goes low, ie. when signal RSLN goes low.

Note: BAWOFN is considered as significant from the time RSLN goes high (after power on) to $5 \mu \mathrm{~s}$ after PWFN goes high- this is the time when the CPU monitors BAWOFN.

When the machine is initially switched on (battery was previously off), IC509 is switched on with pin 3 high and BAWOFN low, see figure 3.5. BAWOFN remains low until the first power failure, at this time RSLN goes high providing a negative going edge which is differentiated by capacitor C510 to produce a negative pulse at the reset input, pin 4 of IC509. The output at pin 3 goes low and BAWOFN goes high. If the battery back-up is active during the power failure, ie. the supply to IC509 is maintained, BAWOFN remains high. When the power is next switched on the CPU will recognise BAWOFN high indicating that the memory supply was maintained during the power failure. If during the power failure the battery supply was switched off IC509 was also switched off and when the mains supply is next switched on IC509 will be switched on in the triggered state and the CPU will recognise BAWOFN low indicating that the memory supply was not maintained during the power failure. The chip is triggered when it is switched on because the voltage at pin 2, derived from the +16 VM supply via resistor bridge R528/529 is initially less than one third of VCC at pin 8 and which is derived from the +16 VM supply via Zener diode CR500. When the +16 VM supply rises to about $9 V$ the voltage at pin 2 rises above one third of $V c c$ and the trigger circuit relaxes. When the chip is switched off there is also a trigger point as shown in figure 3.5, but this is masked by the trigger that follows the next switch on.

a) Transformer Primary Circuit

b) Transformer Secondary Circuit

Figure 3.1 BASIC SWITCHED MODE POWER SUPPLY USING A STEP DOUM TRANSFORMER

(a): Soir: Siart Sequence


(b) : Power Supply Short Circuit and Feedback Open Circuit Protection


Figure 3.2 OPERATION OF TDA1060 VOLTAGE REGULATOR


Figure 3.3 TIMING DIAGRAM FOR MAR LOGIC SIGNALS

ON
OFF $\square$
TRANSISTORS Q514/520


Figure 3.4 BATTERY CHARGE CONTROL


Figure 3.5 "BATTERY WAS OFF" INDICATION

Type No.	Function
TDA 1060	Power Supply Switching Controller
4A 723DC	Voltage Regulator
9602	Dual Retriggerable Monostable Multivibrator
74121	Single Monostable Multivibrator
74538	Quadruple 2-input Positive NAND Buffers (open coll. o/p)
74132	Quadruple 2-input Positive NAND Schmitt Triggers   74502
Quadruple 2-input Positive NOR Gates    LM393 AN Dual Linear Amplifier   NE 555 Timer	

Table 3.1 LIST OF INTEGRATED CIRCUITS USED

LIST OF ILLUSTRATIONS

FIGURE



Figure 4.1 M4R RACK : INTERNAL HIRING


Figure 4.2 MAR POHER SUPPLY :
mains input and senuence logic

+5 V REGULATOR AND POUER SUPPLY


Figure 4.4 : M4R POUER SUPPLY 16V REGULATOR ANID POHER SUPPLIFS

-5V REGULATOR AND POMER SUPPLY


## LIST OF ILLUSTRATIONS

FIGURE	6.1	M4R Parts List Guide	PAGE 6-3/4
	6.2	M4R Regulator Card	6-16
	6.3	M4R Heatsink Assembly	6-17
	6.4	M4R Filter Cards	6-18
	6.5	M 4 R Battery Card	6-19
		LIST OF TABLES	
TABLE	6.1	M4R Basic Mounting Box	6-5
	6.2	Vent Fan Support Assembly (115V)	6-5
	6.3	Vent Fan Support Assembly (220V)	6-6
	6.4	Filter Sub-Assembly	6-6
	6.5	FRCP Assembly	6-6
	6.6	Regulator Sub-Assembly	6-6
	6.7	M4R Battery Option	6-7
	6.8	Heatsink (equipped)	6-7
	6.9	Capacitor Assembly	6-7
	6.10	5 Volt Filter Card	6-8
	6.11	16 Volt Filter Card	6-8
	6.12	M4R Regulator Card	6-9
	6.13	M4R Battery Card	6-13



Figure 6.1 MAR PARTS LIST GUIDE


Table 6.1 M4R BASIC MOUNTING BOX PARTS LIST - 511119966010

Description	I2NC Code
Ventilator Fan, $115 \mathrm{~V}, 114 \mathrm{~mm}$ diameter   Note: there are two fans connected in parallel   across the mains supply	511100001751

Table 6.2 VENT FAN SUPPORT ASSEMBLY (115V) PARTS LIST - 511119965440

Description	12NC Code
Identical to assembly for 115 V except that the   two fans are connected in series across the   mains supply	

Table 6.3 VENT FAN SUPPORT ASSEMBLY (220V) PARTS LIST - 511119965450

Reference	Description	I2NC Code
	Heatsink, equipped	511119965510
	Capacitor Assembly	511119965500
	5 Volt Filter Card	511119966120
	16 Volt Filter Card	511119966130
L1	Inductance SLF 5521	511101005521
L2	Inductance SLF 5541	511101005541

Table 6.4 FILTER SUB-ASSEMBLY PARTS LIST - 511119965530

Description	12NC Code
FRCP (Full Refreshed Control Panel)	

Table 6.5 FRCP ASSEMBLY PARTS LIST - 511119966300

Description	12NC Code
M4R Regulator Card	

Table 6.6 REGULATOR SUB-ASSEMBLY PARTS LIST - 511119965520

Reference	Description	12NC Code
L5	M4R Battery Card   M4R Battery Pack   Ferrite Core, violet, 23.14.7, (Philips)   - wound with fife turns of the connecting lead between the 16 V Filter card and the +16 VM connector of the M4R Battery Card.	5111 199 66000   5111 010 05761   4322 020 97190

Table 6.7 MAR BATTERY OPTION PARTS LIST - 511119965430

Reference	Description	12NC Code
CR1,2	Diode, SD51	933270060682
CR 100, 101	Diode, BYW 31-50	933387320112
CR110	Diode, SD41	933400480682
C11,12	Capacitor 0.047- ${ }^{\text {F }}$, 400v, 20\%, PMA	201130155652
R2, 3	Resistor, RB59-10 0hm.	211125000138

Table 6.8 HEATSINK (EQUIPPED) PARTS LIST - 511119965510

Reference	Description	12NC Code
C1-C6	Capacitor, $1500 \mu \mathrm{~F}, 6.3 \mathrm{~V}$	

Table 6.9 CAPACITOR ASSEMBLY PARTS LIST - 511119965500

Reference	Description	12NC Code
	Printed Circuit Card	511110007521
Q501	Thyristor, BTW92/600RM	933167880112
Q502	Transistor, 2N2906	933061800112
CR505	Diode, BZX79 C5V6	933117730112
C501	Capacitor, 0.1的, 100V, 10\%, MPR	222234490002
R501	Resistor, 100 Ohm. 0.25W, 5\%	232221113101
R502	Resistor, 300 0hm. 0.5W, 5\%	232221213301
R503	Resistor, 46.4 Ohm. $0.25 \mathrm{~W}, 1 \%$	
R504	Resistor, 10 Ohm. 0.5W, 5\%	232221213109
R505	Resistor, 47 Ohm. RB59, 5\%	211125000229

Table 6.105 VOLT FILTER CARD PARTS LIST - 511119966120

Reference	Description	12 NC Code
	Printed Circuit Card	511110007511
CR114	Diode, PFZ20	933537660682
R100	Resistor, 470 Ohm., RB59, 5\%	211125000152
R101,104	Resistor, 1.5K, RB59, 5\%	211125000159
C100-105	Capacitor, 47 FF, 25V, ALSIC	201103100319

Table 6.1116 VOLT FILTER CARD PARTS LIST - 511119966130


Table 6.12 MAP REGULATOR CARD PARTS LIST - 511119966070

Reference	Description	12NC Code
$\left[\begin{array}{l} P 1-5,401, \\ 402 \end{array}\right]$	Potentiometer , 1K, 2600 p 102	212201100019
$\left[\begin{array}{l} R 4-7, \\ 107,108 \end{array}\right]$	Resistor, 1.8K, 5\%, RB57	211125030437
R8	Resistor, 2.2 0hm. RB59	211125000168
R9,110	Resistor, 47 Ohm. 0.5H, 5\%	$\begin{array}{llll}2322 & 212 & 13479\end{array}$
R10	Resistor, 3.3 Ohm. $0.25 \mathrm{~W}, 5 \%$	232221113338
R11,12	Resistor, $2.2 \mathrm{~K}, 0.5 \mathrm{l}, 5 \%$	232221213222
R13,14,211	Resistor, 1.5K, 0.5W, 5\%	$2322 \quad 21213152$
R15,26,116	Resistor, 1K, 0.5W, 5\%	$\begin{array}{llll}2322 & 212 & 13102\end{array}$
R16,17,115	Resistor, 390 0hm. 0.5W, 5\%	232221213391
R18,121	Resistor, 6.19K, 0.125W, 5\%	232215156192
R19,122	Resistor, Select on test (between 5.36 K and 6.98 K$), 0.125 \mathrm{~W}, 1 \%$	2322151 XXXXX
R20,123	Resistor, 3.48K, 0.125W, 1\%	232215153482
R21	Resistor, 8.25K, 0.125 W, 1\%	
R22	Resistor, 47K, 0.25W, 5\%	232221113473
$\left[\begin{array}{l} R 23,120,206, \\ 230,231 \end{array}\right]$	Resistor, 4.7K, 0.25W, 5\%	232221113472
$\left[\begin{array}{l} R 24,25,112, \\ 212,218,227 \end{array}\right]$	Resistor, 1.2K, 0.25h, 5\%	232221113122
R109	Resistor, 4.7 0hm. RB59, 5\%	21112500065
R111	Resistor, 22 0hm. $0.5 \mathrm{~W}, 5 \%$	$2322 \quad 21213229$
R113,114	Resistor, 3.9K, 0.5W, 5\%	$2322 \quad 21113392$
R117	Resistor, 510 0hm. $0.25 \mathrm{~W}, 5 \%$	232221113511
R118,208,220	Resistor, 2K, 0.25W, 5\%	
R124	Resistor, $7.5 \mathrm{~K}, 0.125 \mathrm{~W}, 1 \%$	$\begin{array}{llllll}2322 & 21157501\end{array}$
R125,221	Resistor, 240 Ohm. $0.25 \mathrm{~W}, 5 \%$	232221113241
R126,402	Resistor, 5.1K, 0.25W, 5\%	$\begin{array}{ll}2322 & 211 \\ 13512\end{array}$
R127	Resistor, 15K, 0.25W, 5\%	232221113153
R200	Resistor, 12K, 0.25W, 5\%	
R201	Resistor, 4.22K, 0.125W, 1\%	$\begin{array}{lllll}2322 & 15154222\end{array}$
R202,404	Resistor, $9.09 \mathrm{~K}, 0.125 \mathrm{~W}, 1 \%$	232215159092
R203	Resistor, 31.6K, $0.125 \mathrm{~W}, 1 \%$	232215153163



Table 6.12 M4R REGULATOR CARD PARTS LIST - 511119966070 (CONT.)

Reference	Description	12NC Code
L3	Inductance, SLF2731	511101002731
L401	Inductance, SLF4231	511101004231
K1	Relay, Seimens, V23027, B006, A102	242213205573
K201	Relay, CUPP 001B105	242213205508
CR3,5	Diode, BYX 42.300R	933015051112
CR4	Diode, BYX 42.300	933015031112
$\left[\begin{array}{l} \operatorname{CR} 6,7,104 \\ 105 \end{array}\right]-$	Diode, BYV96D	933500100112
$\left[\begin{array}{l} C R 8,9,106, \\ 107,200-205, \\ 402 \end{array}\right]$	Diode, BAX12A	933334180112
CR11,109	Diode, BZX79 C5V1	933117720112
CR102,103	Diode, BYW29.50	933391270112
$\left[\begin{array}{l} C R 108,207- \\ 209,114,215 \end{array}\right]$	Diode, BZX75 C3V6	933132140112
CR111-113	Diode, BYX49/300	933151340112
CR208	Diode, BZX79 C4V7	933117710112
CR210	Diode, Bridge, BY164	933087330112
CR211-214	Diode, CQY24	933278880112
CR216	Diode, BZX79 Cl2	933117810112
CR300,301	Diode, BYX99/600	933261940112
CR302,303	Diode, BYX99/600R	933261950112
CR 401	Diode, BYW31.50	933387320112
CR403	Diode, PFZ 6.8	933464010112
Q1,5	Transistor, BUX81	933271530112
Q2,6	Transistor, BDX78	933230610112
Q3,7,402	Transistor, 2N2905A	933035960112
Q4	Transistor, BUY47	933173710112
Q8	Transistor, BDX 77	933230600112
Q10	Transistor, 2N4400	933463990112
Q11,13	Transistor, 2N4402	933464000112
Q12	Transistor, BSX60	933028350112

Table 6.12 M4R REGULATOR CARD PARTS LIST - 511119966070 (CONT.)

Reference	Description	12NC Code
Q313	Triac, BTX94H. 800	933422790112
Q401	Transistor, BDX35	933184930112
IC2,401	Integrated Circuit, TDA 1060	933334760112
IC201,402	Integrated Circuit, $\mu \mathrm{A}$ 723DC	933171351112
IC202	Integrated Circuit, 9602	511100000571
IC203	Integrated Circuit, 74121	511100000291
IC204	Integrated Circuit, 74538	511100004291
IC205	Integrated Circuit, 74132	511100000741
IC206	Integrated Circuit, 74S02	511100002241
IC207,208	Integrated Circuit, LM393 N	511100005461

Table 6.12 M4R REGULATOR CARD PARTS LIST - 511119966070 (CONT.)

Reference	Description	12NC Code
	Printed Circuit Card	511110007542
IC509	Integrated Circuit, NE555	511100002471
IC510	Integrated Circuit, 74S38	511100004291
IC511	Integrated Circuit, LM393 N	511100005461
IC512	Integrated Circuit, TDA1060	933334760112
Q514-517	Transistor, 2N4400, Style 1	933463990112
Q51 8	Transistor, 2N5302	933111990682
Q519	Transistor. BDX35	933184930112
Q520,521	Transistor, 2N2905	933022640112
Q522	Transistor, BDX78	933230610112
CR500,502	Diode, BZX 79 C5V1	933117720112
CR501	Diode, BZX75 C3V6	933132140112
CR503-507	Diode, BAX12A	933334180112
CR508	Diode, 1N823	933111940112
CR509	Diode, BYW 30/50	933387290112
CR510	Diode, 1N4005	933119060112
CR511	Diode, PFZ 6.8	933464010112

Table 6.13 M4R BATTERY CARD PARTS LIST - 511119966000

Reference	Description	12NC Code
K502	Relay, KSNV23016 B0005 A101	242213201442
R500	Resistor, 383 0hm. $0.125 \mathrm{~W}, 1 \%$	$\begin{array}{llll}2322 & 15153831\end{array}$
R501	Resistor, 1.21K, $0.125 \mathrm{~W}, 1 \%$	$\begin{array}{llllll}2322 & 15151212\end{array}$
R502	Resistor, $8.25 \mathrm{~K}, 0.125 \mathrm{~W}, 1 \%$	232215158252
R505	Resistor, 1.62K, 0.125W, 1\%	232215151622
R507	Resistor, 19.6K, 0.125M, 1\%	232215151963
R506	Resistor, 100K, 0.125 W, 1\%	232215151004
R508, 9	Resistor, 5.11K, 0.125W, 1\%	232215155112
R510	Resistor, 42.2K, 0.125W, 1\%	232215154223
R511	Resistor, 9.09K, 0.125W, 1\%	232215159092
R512.525,526	Resistor, 1.2K, 0.25W, 5\%	232221113122
R513	Resistor, 10K, 0.25W, 5\%	232221113103
R514	Resistor, 7.5K, 0.25W, 5\%	232221113752
$\left[\begin{array}{l} R 515-517,529 \\ 531,532 \end{array}\right]$	Resistor, $1 \mathrm{~K}, 0.25 \mathrm{~W}, 5 \%$	232221113102
R518	Resistor, 680 0hm. $0.25 \mathrm{~W}, 5 \%$	232221113681
R519	Resistor, 1.8K, 0.25W, 5\%	232221113182
R520	Resistor, 6.2K, 0.25W, 5\%	232221113622
R521,536	Resistor, 5.1K, 0.25W, 5\%	232221113512
R522,543	Resistor, 6.8K, 0.25W, 5\%	232221113682
R523	Resistor, 47K, 0.25W, 5\%	232221113473
R524	Resistor, $3300 \mathrm{hm} .0 .25 \mathrm{~W}, 5 \%$	232221113331
R527	Resistor, 620 0hm. 0.5W, 5\%	232221213621
R528	Resistor, 4.3K, $0.25 \mathrm{~W}, 5 \%$	232221113432
R530	Resistor, 20K, 0.25W, 5\%	232221113203
R533,541	Resistor, 100 0hm. RB59	211125000136
R534	Resistor, 2.2 Ohm. B59R	211125000168
R535	Resistor, $680 \mathrm{hm} .0 .25 \mathrm{~W}, 5 \%$	
R537-539	Resistor, 43 0hm. 0.5H, 5\%	232221213439
R540	Resistor, 100 0hm. $0.25 \mathrm{~W}, 5 \%$	232221113101
R542	Resistor, 330 0hm. 0.51, 5\%	232221213331
R544	Resistor, $2 \mathrm{~K}, 0.25 \mathrm{~W}, 5 \%$	232221113202
P5,6	Potentiometer, 1k, 2600P. 102	212201100019
P7	Potentiometer, 50K, type 64W	212236200436

Table 6.13 M4R BATTERY CARD PARTS LIST - 511119966000

Reference	Description	12NC Code
TR. 8	Transformer, AT4043.47	312213893391
TR9	Transformer, AT4043.48	312213890581
L4	Inductor, SLF 5531	511101005531
C500	Capacitor, $1000 \mu \mathrm{~F}, 25 \mathrm{~V}$, Alsic	201103100336
C501, 503-505	Capacitor, 1000 F , 10V, Alsic	201103100309
C502	Capacitor, 10-F, 25V, Fitco	222201516109
C506	Capacitor, 3.3nF, 5\%, CRAA	201130748001
C507,510	Capacitor, 10 nF , Cerplat	222262901103
513,515		
C508	Capacitor, 0.1的, 100V, MPR	222234490101
C509	Capacitor, $1 \mu \mathrm{~F}$, MPR	222234421105
C511	Capacitor, 47 $\mathrm{F}, 10 \mathrm{~V}$, Fitco	222201514479
C512	Capacitor, $0.22 \mu \mathrm{~F}, \mathrm{MPR}$	222234421224
C514	Capacitor, 3.9nF, Cerplat	222263001392

Table 6.13 M4R BATTERY CARD PARTS LIST - 511119966000 (CONT.)


Figure 6.2 M4R REGULATOR CARD


Figure 6.3 M4R HEATSINK ASSEMBLY

(a) 5 VOLT FILTER CARD

(b) 16 VOLT FILTER CARD


Figure 6.5 MAR BATTERY CARD

IDENTIFICATION CODE NUMBER			SERUICE   CODE NUNBER			DESCRIPTION	
2011	017	00072	5322	124	74179	CAP. 1500UF	2000
2011	031	00309	4822	124	40184	CAP. 1000UF	10 U
2011	031	00319	5322	124	40382	CAP.470UF 2	25 V
2011	031	00334	4822	124	40228	CAP. 470 UF	40 V
2011	031	00336	5322	124	40383	CAP.1000UF	50 V
2011	220	03003	5322	121	41454	CAP	
2011	301	55851	4822	121	40278	CAP. 22000PF	$F 400 \mathrm{~V}$
2011	301	55852	4822	121	40023	CAP. 0.047 UF	F 400V 20\%
2011	301	66403	5322	121	44033	CAP.0,1UF 6	630 V
2011	307	48001	4822	121	40519	CAP.3,3NF 2	250U 10\%
- ${ }^{-1}$							
2022	552	00602	5322	122	34108	CAP. 0,1 UF	CER.
2022	552	01753	5322	122	31586	CAP.SR155C1	153 KAA
2111	250	00065	5322	113	44245	RES.4.7E 5\%	
2111	250	00136	5322	113	44247	RES.100E RE	B59 WH
2111	25	001	5	11	44	RES. 10 E	
2111	250	00152	5322	113	41005	RES.470E RB	B59 5\%
2111	250	00159	5322	113	41006	RES.1,5K RE	B59 5\%
2111	250	00168	5322	113	41007	RES.2,2E RB	B59 HH
2111	250	30437	4822	112	41114	RES.1,8K 5\%	
2111	250	40501	5322	113	41008	RES. 10 E 10\%	
2122	011	00019	5322	103	10023	POTM. 1 K	
2122	362	00436	5322	101	10295	POYM. 50 K	
2222	015	14101	4822	124	20679	CAP. 100UF 10	10 V
2222	015	14479	4822	124	20678	CAP. 47 UF 10 V	OV
- ${ }^{\text {a }}$							
2222	015	15478	4822	124	20686	CAP.4,7UF	16 V
2222	015	16109	4822	124	20697	CAP. 10UF	25 V
2222	015	16229	4822	124	20698	CAP. 22UF 25	5 V
2222	015	17339	4822	124	20712	CAP. 33 UF 40	OV
2222	015	18109	4822	124	20728	CAP 10 UF 63	3 V
-							
2222	016	16479	5322	124	20371	CAP. 047UF	250
2222	108	33152	5322	124	24122	CAP.1500UF	50\% 6,30
2222	344	21105	5322	121	40197	CAP. 1 UF	100 V
2222	344	21155	5322	121	40227	CAP.1,5UF	100 V
2222	344	21224	4822	121	40232	CAP. $0,22 \mathrm{UF}$	100V 10\%
-							
2222	344	21334	4822	121	40257	CAP $00,33 \mathrm{JF}$	100 V
2222	344	25335	5322	121	40283	CAP. 3,3UF	100 V
2222	344	41223	5322	121	40308	CAP.0,022UF	F 250 V
2222	344	90002	5322	121	40323	CAP.0,1UF	100V 10\%
2222	357	92222	4822	121	41339	CAP.2,2NF	2000 V
- 222 35 P222e 4022 $1214133 \mathrm{CAP.2,2NF} 2000 \mathrm{~V}$							
2222	357	92472	5322	121	44356	CAP.4.7NF	2000 V
2222	629	03103	4822	122	30043	CAP. 10 NF	
2222	630	01102	4822	122	30027	CAP.1N 10\%	
2222	630	01221	4822	122	30094	CAP. 220PF	F 10X CER
2222	630	01391	4822	122	30091	CAP.390PF	10\%
-							
2222	630	01392	4822	122	30098	CAP.3,9NF	100U 10\%
2222	630	01471	4822	122	30034	CAP.470PF	10\%
2222	630	01561	4822	122	30126	CAP.560PF	
2222	630	01681	4822	122	30053	CAP.680PF	10\%
2222	631	58151	4822	122	31085	CAP. 150PF	
-							
2222	631	58181	5322	122	34144	CAP - 180PF	10\%
2222	632	10339	4822	122	31067	CAP.33PF 2\%	
2222	632	58479	4822	122	31236	CAP $=47 \mathrm{PF} 2 \%$	\%
2322	151	51004	5322	116	54696	RES.100K	1\% 1/8W
2322	151	51009	5322	116	50452	RES. 10E 0	,125H 1\%
-							
2322	151	51101	5322	116	54474	RES.110E	0.1254 1\%
2322	151	51212	5322	116	54557	RES.1,21K	1\% 1/8H
2322	151	51213	5322	116	50572	RES.12,1K	1/84 1\%
2322	151	51472	5322	116	50635	RES. $1,47 \mathrm{~K}$	0,125W 1\%
2322	151	51622	5322	116	55359	RES.1,62K	1 $21 / 8 \mathrm{H}$





IDENTIFICATION CODE NUHBER		SERUICE   CODE NUMBER			DESCRIPTION
5111	10018303	5322	466	85732	PRINT RIGIDIZING
5111	19965530	5322	218	74572	POHERING ASSY
5111	19966000	5322	218	21026	PCB BATTERY MAR
5111	19966070	5322	216	25736	PCB REG. HAR
\$111	19966120	5322	216	21027	PCB FILTER 5U
5111	19966130	5322	216	21028	PCB FILTER 16V
5111	19966310	5322	216	25626	FRCP ASSY
5111	19967580	5322	216	25516	PCB, CP7R /P857-R
8211	22004273	5322	209	86543	IC 74LS245 (SELECT)
9300	87320682	5322	131	94061	DISPLAY FG610 A1
9330					
9330	04210112	4822	130	30084	DIODE AAZ1B
9330	15031112	5322	130	30554	DOIDE BYX42/300
9330	15051112	5322	130	30597	DOIDE BYX42/300R
9330	21920112	5322	130	40417	TRANSISTOR BSX20
9330	22640112	5322	130	40021	TRANSISTOR 2N2905
-					
9330	28350112	5322	130	44019	TRANSISTOR B5X60
9330	35960112	5322	130	40468	TRANS. 2N2905A
9330	61800112	5322	130	44502	TRANSISTOR 2N2906
9330	87330112	4822	130	30414	DIODE BY164
9331	11940112	5322	130	34405	DIODE 1N823
9331	11990682	5322	130	44004	TRAN5.2N5302
9331	17710112	4822	130	34174	ZENER DIODE B2X79
9331	17720112	4822	130	34233	DIODE BZX79C5U1
9331	17730112	4822	130	34173	ZENER DIODE BZX79
9331	17810112	4822	130	34197.	DIODE BZX79 C12
-					
9331	19060112	5322	130	34323	DIDDE IN4005
9331	32140112	4822	130	30765	Z-DIODE BZX75/C3V6
9331	51340112	5322	130	34304	DOIDE BYX49/300
9331	67880112	5322	130	24054	THYRISTOR BTH92/600
9331	73710112	5322	130	44084	TRANS.BUY47
-					
9331	84930112	5322	130	44417	TRANS.BDX35
9332	30600112	5322	130	44553	TRANS. BDX77
9332	30610112	5322	130	44278	TRANS. BDX7B
9332	61940112	5322	130	44734	DIODE BYX99/600
9332	61950112	5322	130	34646	DIODE BYX99/600R
-					
9332	70060112	5322	130	34523	DIDDE SD5
9332	71530112	5322	130	44729	TRANS. BUX81
9332	78880112	4822	130	31314	DOIDE COY24
9333	34180112	5322	130	34605	DOIDE BAX12A
9333	34760112	5322	209	85662	IC TDA1060
9333	37740112	5322	209	14248	IC COM 6016
9333	87290112	5322	130	31489	DIODE BYH30/50
9333	87320112	5322	130	31491	DIODE BYK31-50
9333	91270112	4822	130	31195	DOIDE BYW29-50
9334	00480112	5322	130	44817	DIODE SD41
-					
9334	22790112	5322	130	20106	TRIAC ETX94H-800
9334	639.90112	5322	130	44832	TRANS $2 \mathrm{2N4} 400$
9334	64000112	5322	130	44835	TRANS.2N4402
9334	64010112	5322	130	34894	DOIDE PFZ6.8
9334	941 60682	5322	209	86396	IC.AH2932DC
-					
9335	00100112	4822	130	31348	DUIDE BYU96D
9335	37660112	5322	130	31493	DIODE PFZ20
END OF REPDRT					

SECTION 7.1 DISASSEMBLY ..... PAGE 7-2
7.1.1 Removing the Rack from the Cabinet ..... 7-2
7.1.2 Rack Cover ..... 7-2
7.1.3 Mains Safety Shield ..... 7-2
7.1.4 Battery Card ..... 7-2
7.1.5 Regulator Card ..... 7-2
7.1.6 Capacitor Assembly ..... 7-3
7.1.7 Heatsink Assembly ..... 7-3
7.1.8 16 Volt Filter Card ..... 7-3
7.1.9 5 Volt Filter Card ..... 7-3
7.1.10 Battery ..... 7-4
7.2 ADJUSTMENTS ..... 7-4
7.3 POWER SUPPLY WAVEFORMS ..... 7-4
LIST OF DIAGRAMS
FIGURE 7.1 Main Assembities of M4R Power Supply ..... 7-5/6
7.2 Waveforms for M4R Power Supply ..... 7-7

### 7.1 DISASSEMBLY

UARNING: Before attempting any disassembly procedures, switch off the mains supply to the rack.
The components of the power supply and battery back-up system (if fitted) are mounted in the box at the top of the rack. Figure 7.1 is a top view of the rack showing the main components of the power supply.

### 7.1.1 REMOVING THE RACK FROM THE CABINET

The rack is mounted on telescopic slides in the cabinet.
. Unscrew the two rack retaining screws. These are located through the operators panel at the front of the rack, see figure 1.1.
. Slide the rack forward out of the cabinet as far as it will go.

### 7.1.2 RACK COVER

. Perform the instructions at para. 7.1.
. Unscrew and remove the four screw in the cover.
. Lift off the cover.

### 7.1.3 MAINS SAFETY SHIELD

The safety shield is mounted on four pillars above the regulator card.
. Perform the instructions at paras. 7.1-7.2.
. Unscrew and remove the four nuts which hold the shield in place.
. Lift off the shield.

### 7.1.4 BATTERY CARD (if fitted)

The battery card is mounted on four pillars towards the front of the rack, slightly overlapping the regulator card.
. Perform the instructions at paras. 7.1-7.2.

- Disconnect the Power, Logic Signal and Regulator Card connectors, see figure 1.9.
. Unscrew and remove the four nuts which hold the card in place.
. Lift off the card.


### 7.1.5 REGULATOR CARD

. Perform the instructions at paras. 7.1 - 7.4.

- Disconnect the Power, Logic Signal, Voltage Sense and Mains connectors, see figure 1.8 .
- Unscrew and remove the flying lead connections at the heatsink assembly. These are terminals MSI and 0 to transformers TRI and TR4 and the mechanical ground connector $E$.
- Unscrew and remove the mechanical ground connection for the Voltage Sense signals.
- Unscrew and remove the four support pillars for the safety shield, one support pillar for the battery card (which also holds the regulator card in place) and one nut at the corner of the regulator card nearest the front of the rack.
. Lift off the regulator card with capacitors c300-303 attached.


### 7.1.6 CAPACITOR ASSEMBLY

. Perform the instructions at paras. 7.1-7.2

- Unscrew and remove the four nuts and bolts (one at each end of each arm of the assembly) which attach the assembly to the back panel pob at one end and to the heatsink assembly at the other.
. Lift off the assembly.


### 7.1.7 HEATSINK ASSEMBLY

- Perform the instructions at para. 7.6.
- Unsolder and remove the lead at the cathode of diode CR110, see figure 1.10 .
- Unscrew and remove the other connections to the assembly. The "Faston" connector to mechanical ground (E) may be left attached.
- Unscrew and remove the four screws which hold the assembly in place, one of which is the mechanical ground connection (E).
. Lift off the assembly.


### 7.1.8 16 VOLT FILTER CARD

- Perform the instructions at paras. 7.1-7.2.
- Unsolder and remove the lead at the cathode of CR110 of the heatsink assembly, see figure 1.10.
- Disconnect all other connections to the card, either at the card or at the other end of the lead (ie. for leads which are soldered to the card).
- Unscrew and remove the three nuts which hold the card in place.
. Lift off the card.


### 7.1.9 5 VOLT FILTER CARD

- Perform the instructions at paras. 7.1-7.2.
- Unscrew and remove the two connections to the card.
- Unscrew and remove the two nuts which hold the card in place.
. Lift off the card.


### 7.1.10 BATTERY (if fitted)

. Perform the inistructions at paras. 7.1-7.2.

- Disconnect the two connections to the battery card.
. Unscrew and remove the two long screws which pass through the battery pack.
. Lift off the battery pack.


### 7.2 ADJUSTMENTS

Trimpots mounted on the regulator card provide the following adjustments, (see figure 1.8);
. +5VL supply output voltage is adjusted with P1, with supply under full load, ie. 60A.
. +5 VL supply overcurrent 1 imit is adjusted with P2 (to trip as P2 is turned anti-clockwise) for a current of 65A.
. +16VM supply output voltage is adjusted with P4, with supply loaded to 11A (this load simulates nominal full load simultaneously on the +16VM, +16VL, $-16 \mathrm{VL},-5 \mathrm{VM}$ and +5 VM supplies).

- 16 Volt supplies overcurrent limit is adjusted with P3 (to trip as P3 is turned anti-clockwise) with the +16 VM supply loaded to 14 A , (this load simulates a simultaneous overcurrent on the $+16 \mathrm{VM},+16 \mathrm{VL},-16 \mathrm{VL},-5 \mathrm{VM}$ and +5 VM supplies).
. Power off detection time is adjusted to 10 ms with P5.
. -5VM supply output voltage is adjusted with P401, with supply under full load, ie. 0.8 A .
. -5VM supply overcurrent limit is adjusted with P402 (to trip as P402 is turned anti-clockwise) for a current of 1.5A.
Trimpots mounted on the Battery Card provide the following adjustments (see figure 1.9);
. +5 VM supply output voltage is adjusted with P5, with supply under full load, ie. 8 A.
. +5 VM supply overcurrent 1 imit is adjusted with P6 (to trip as P6 is turned anti-clockwise) for a current of 10 A .
. Battery cut-off voltage (battery back-up control ) is adjusted with P7 between +12 V and +13 V .


### 7.3 POWER SUPPLY WAVEFORMS

Figure 7.2 shows the wave forms that can be monitored at key points in the electronics with an osciloscope. These waveforms are all cyclic so they can be continuously monitored. Note: The shapes of the waveforms shown are typical, the actual waveforms monitored for a given rack may differ slightly.

FRONT


Figure 7.1 MAIN ASSEMBLIES OF M4R POHER SUPPLY - SHOWM WITH RACK COVER AND MAINS SAFETY SHIELD REMOVED

(a): for +5 VL supply on full load


Figure 7.2 WAVEFORMS FOR MAR POWER SUPPLY


[^0]:    Figure 1.9 M4R BATTERY CARD (OPTIONAL)

