Chapter 9

EXTENDED DATA MANAGEMENT

9.1 INTRODUCTION

This chapter discusses the file types handled by EDM and how to create
them, the types of indexing available and the logging functioms
supported by EDM. In addition, details of file enlargement in EDM and
notes on EDM file maintenance are given.

M23A 9.1.1 June 1983

EDM

EXTENDED DATA MANAGEMENT EDM

9.2 INSTRUCTION SET

File handling instructions:

OPEN .DOUT
OPEN LEXT

OPEN .IN
OPEN .INOUT
OPEN .S0UT

CLOSE
CLOSE .DROP

POSIT .DIR
POSIT .IXDIR
DSC X"19°

Create a new file and open for direct output
Open and Extend an existing standard file for
sequential output

Open an existing file for input only

Open an existing file for input and output
Create a new file and open for sequential output

Close file
Close and delete file

Set Current Record Number on specified record
Set Current Record Number on record with specified key
Read File Parameters

Record handling instructions

READ .DIR
READ .SEQ

READ .IXDIR
READ .IXSEQ

WRITE .DIR
WRITE .SEQ
WRITE .IXDIR
WRITE .IXSEQ

REWRITE .CUR
REWRITE .DIR
REWRITE .IXDIR

DISCARD .CUR
DISCARD .DIR
DISCARD ,IXDIR

Read record with specified relative key
Read next record using the relative key
Read record with specified symbolic key
Read record with next symbolic key

Write record with specified relative key
Write next record using the relative key
Write record with specified symbolic key
Write record with next symbolic key

Rewrite current record
Rewrite record with specified relative key
Rewrite record with specified symbolic key

Delete current record
Delete record with specified relative key
Delete record with specified symbolic key

Transaction Control Instructions

COMMIT

COMMIT .PROT

COMMIT .REL

ROLLBCK

M23A

Release the records accessed during the current
transaction

Release the records accessed during the current
transaction except those on the specified files
Release the records accessed during the current
transaction, on the specified files only
Rollback the current transaction

9.2.1 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.3 FILE TYPES

EDM handles standard files and indexed files of E-type (EDM-files).

9.3.1 Standard Files

A standard file is a file where the records are identified by the
relative key. The records have a fixed length and are grouped into
blocks that always start on a logical sector boundary. Each record has
a status byte indicating if the record is "used" or "free". There is no
free record chain. The Last Record Number {(LRN) defines the logical end
of the file {see section 8.4.3). Up to 64 file extents are allowed per
volume, and up to 4 file sections. The file name consists of one
alphabetic ISO-7 character followed by up to 7 alphanumeric characters.,

9.3.2 Indexed File of E-Type

Indexed files of E-type (EDM files) are indexed random files. The data
records are identified by up to 10 symbolic keys. Symbolic keys may
consist of up to 64 key—~items. The file name consists of one
alphabetic IS0-7 character followed by up to 7 alphanumeric characters.

Internally, each data record is located by EDM by its relative key.

The data file of an EDM file is the "D-file" and the index file is the
"I-file".

D-file

A data file of E-type is a file which contains only data records. The
records are identified by the application by symbolic keys. Intermnally,
the records are identified by the relative key. The records have a
fixed length and are grouped into blocks that always start on a logical
sector boundary. Each record has a status byte indicating if the record
is "used" or "free".

The D-file has a free record chain (see alsoc section 9.3.3). Discarded
records are added to the chain and thus may be re—used. The relative

key of the first free record in the chain is stored in the VTOC, as
described in chapter 3. Up to 64 file extents are allowed per volume,
and up to 4 file sections. The file name consists of one alphabetic ISO-
7 character followed by up to 7 alphanumeric characters.

I File

The I-file is a file which contains all the indexes defined for one
indexed EDM file. The index entries are grouped into records. The
record length of the I-file is always 256 bytes, with a blocking factor
of 1.

The index file name must consist of "I§" followed by the first 6

characters of the corresponding data file name,

M23A 9.3.1 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

Each index entry contains the kev with the highest value in one index
block on the one lower level, plus the relative key of that block, The
entries in each level are sorted on the value of the keys in ascending
order. The keys are packed, that is, only the part that is different
from the preceding key is stored in the index entry. Each key is
compared with the preceding key from left to right, to find the first
character which is different. The kev is then stored, starting from
this character.

The first index block contains the index descriptors, which are
discussed in Chapter 5.

Each index block except the first oue has the following layout:

| LEVEL | INDEX | FREE | STATUS |
| NUMBER| ENTRIES | SPacE | BYTE |
Level Number : One byte containing the sequence number of the index

level of this index block.

Index Entry : Fach index entry consists of the following items:
Key Length : ' - hvte. The number of characters of the
wwulic key stored in this entry.
Key : iue part of the symbolic key which is
different from the previous kev.
Pointer : Four bytes, containing the relative key

of the index block at the next lower
level which has this key as the highest
xey value. For the entries at the lowest
level, this is the relative key of the
corresponding data record.

Free Space : Starting with a dummy index entry, with a key field
filled with X'FFf" and a pointer value of zero. This is
to prevent all index levels from having to be updated
if a key is inserted with a higher value than the
highest walue that occurs in the index.

Status Byte : Value X'007 if the record is free, and the value X'FF’

if the record is used.

The size of an I-file, in sectors, is:

n
n+1+) (keylength + 5) * number of records , 3

1 legical sector lemgth -~ 2

N

n° is the number of indexes defined for the data file.
The size will be rounded upward to a multiple of three sectors.

M23A 9.3.2 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

Index Levels

Indexes in EDM may have up to 16 levels. The index with references to
the data records has index level zero. Index levels are transparent to
the application progranm.

For an indexed direct access, first the highest index level is searched
for a symbolic key with the same or a higher value than the key
specified. The index entry thus found, indicates from which point the
next lower level must be searched. The next lower level is then
searched for a key with the same or a higher value than the key
specified, and this index entry again indicates from where to search
the next lower level. This is repeated until, on index level zero, the
reference to the required data record is found.

When an index block in any level hecomes full, (no free space left) its
contents are split over two blocks each filled about half, and on the
next higher level one new index entry is created corresponding with
this new block. If the block on the higher level becomes full, it is

split in the same way and on the next higher level one new index entry
is added.

When there are already 16 index levels and a block at the highest level
has to be split, an automatic rollback is performed if transaction
logging is required for the file, Without transaction logging, the I-
file is left in an inconsistent state (File Corrupt). If function
logging is required, the files can be recovered with the utility
Recover EDM File (RCF). The application is informed in the Return
Status (value 10).

9.3.3 Free Record Chain

Deleted data records are re~used by EDM. The '"File Record Number" in
the VIOC record for the file contains the relative key of the first
free record. This first free record then contains the relative key of
the next free record, and so on. When a data record is deleted, its
relative key is added to this free record chain. When new records are
written to the file, they are written into these free record positions
and the chain is updated. When the file is closed, the updated File
Record Number is written back to the VIOC on disk.

9.3.4 File Status

The first byte of the I-file indicates the status of the I-file
(ecorrect or corrupt). The value of this byte is set to 1, indicating
corrupt, when the Monitor detects an I/0 error during a block split in
the I-file or EDM detects an inconsistency. When the file is accessed
and found to be corrupt, the request is completed with bhit 0 and 8 set
in the Status Word and with Return Status indicating I/0 error. In that
case, the only order that will be accepted is Close File. The files may
have to be recovered from the backups with the information from the
function log file.

M23A 9.3.3 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.4 RECORD IDENTIFICATION

9.4.1 Prime Key

At least one of the symbolic keys must be unique for each data record.
This is the prime key. The index containing the prime key must be
defined as the first index when the file is created or opened. The
other keys are called alternate keys, and for those the File Parameter
"Index Type" may indicate that duplicates are allowed.

9.4,2 Concatenated Keys

Record keys may be concatenated keys, that is, they may consist of
several data items (up to 16). The key descriptor must contain the
number of items the key consists of and their position within the data
record.

The keylength of these keys 1s the sum of the separate key items.

9.4.3 Duplicate Keys

If the File Parameter "Index Type" indicates that duplicates are
allowed, the symbolic key may have the same value in several records.
For indexed accesses on these records, the first one is found by an
indexed direct access and the others may be accessed by indexed
sequential operations. Figure 9-1 gives an example for the key
"Williams", which occurs twice in the data file,

9.4.4 Conditional Indexing

If conditional indexing is required, reference to a data record is only
included in the index where it should go according to the symbolic key
under certaln predefined conditions.

One character item of the data record is defined to be the Conditional
Item. The value of this item is compared with the value of Conditional
Item Value set in the conditional index description by the application
when the file was opened. If the condition, which may be "equal" or
"unequal", is satisfied, the entry is included in the index.

During updating of the record the value of the conditional item may be
changed, e.g. an account holder’s balance may change from negative to
positive, or the amount on stock of a certain article may change from
positive to zero or to less than a minimum value. When the record is
rewritten to the file the index will be updated accordingly: the entry
is deleted from the index for which the conditional item no longer has
the required value, and/or included in the index for which the
condition is now fulfilled.

Example

For the file in fig. 9~1, the item in position 22 in the data record is
defined as a conditional item for index 4. The condition specified is
"Equal’, the index only contains entries for the data records for which
the conditional item is equal to ‘F’.

M23A 9.4.1 June 1983

EDM EXTENDED DATA MANAGEMENT FDM

The record for a female with the name of Williams is retrieved by an
indexed access via index 4 with the key ‘Williams’. Thig w%ll iny\g%ve
record 19, and the application need not check the item indicating 'F

or ‘M.

To find the record for a man with the name of Williams, a fifth index
can be specified with the same conditional item. The same conditional
value can he stated and the condition Not Equal specified, but then
also records with an erroneous contents (for example, *G’) for this
item will be included. It is safer to specify conditional value ‘M7 and

the condition Equal.

INDEX 4 ?up%icate Keys
Conditional Index in index 2
Cond. Item value "F"

Level 0
1 ANDERSON| 03 ;NDE); 1{
eve
02 BERRY L e e ﬁ 01 CLAYTON | 05
01 DEWIDT 20 HILLARY | 10
04 ame | Zj sHrTR | 15
03 WATKINS | Q7 [o4 D— 2
06 wiLLiaMs| 1%
INDEX 2
ni “FFFFFE" | 0O Level 0
1 ANDERSON PS5
DATA FILE 2 BERRY L1
Relative Cond., Prime
Key Rey 2 Key 3 {tem key 1 BURKETT [18
i Clayton David L] 826 4 BLOCH D6
2 Shaw Patrick M| 743 5 CLAYTON i
1 Wilcocks Brian M | 657 3 COLEMAN P4
[Coleman Ho M | 815 7 DEWIDT RO
5 Anderson Ethel P 1732 | e -ed 8 HANHURST 15
6 Bloch David K | 882 9 HARTMAN 16
? Watkins Thota F o[537 10 HILLARY [i2
) Smith Denis N | 791 11 LEWIS o9
% Lewin Petet H 229 12 DSUALD i
10 Williams Ronald o207 |een 13 RICHARDSORL3
11 Berry Printha F | 888 |wll——— 14 SHAW 02
12 Hillary Thonas M {330 Lg-15 SMITH 08
13 Richardecn] John N O[772 16 WATHRE L&
14 Wathke Bhyllia F o022 17 WATKINS 07
15 Hanhurst Donald M| 647 i8 wILGOCKS 03
16 Hartman Paul | 863 19 WILLIAMS (10
17 Oswald Denis M |251 . 20 WILLIAMS [19
18 Burket Sohn K 596 21 “FFEFFF" o
19 Williamm Deborah F 041 B R —
20 Dewide Prancin F 122

Fig. 9-1 Conditional Indexing and Duplicate Keys

M2 3A 9.4.2 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.4.5 Currency

EDM holds a curvent record number per data file for each task. This is
the relative key of the current record for the task. The currency is
set by Read and Posit instructions. The currency is used for record
identification hy Read Sequential, Rewrite Current and Discard Current
instructions. Rewrite Current and Discard Current after a Posit
instruction will access the record that has become the current record
as a result of the Posit instruction. When a file is opened the
currency is set to zero sc that the record with relative key 1 is read
with the first Read Sequential (non=-indexed) instruction.

Per task, EDM holds the currency for each index opened for the file.
When a file is opened all currencies will be zero, so that indexed
sequential access starts with he record associated with the first entry
for each index.

The index currency is used for record identification by Read Indexed
Sequential instructions.

M23A 9.4.3 June 1983

EDM EXTENDED DATA MANAGEMENT FDM

9.5 LOGGING

9.5.1 File Recovery

File recovery after error situations or system failure is possible when
logging is used. Two types of logging are implemented in EDM:

-~ Transaction logging
~ Function logging

Transaction logging is needed for file recovery when a single
transaction can not be successfully completed. It is possible that
while a transaction is being executed, it becomes necessary to cancel
it. It may be that erroneocus data have been keyed in by the operator,
that the input data from the files are in conflict or that it is not
possible to access all the records needed for the transaction.
Transaction logging makes it possible to undo a transaction that has
not yet been completed, and bring the files back in the consistent
state they had at the start of the transaction.

Function logging is needed for file recovery after hardware failures.
Disk failures or power failures may disturb the files that are on~line
so that they can no longer be used. The transactions performed up to
that moment are lost. With function logging, a log has been made of the
functions performed and with this a back—up copy of the files can be
recovered before the application continues.,

9.5.2 Transaction Logging

Transaction logging means that for every record which is modified
during a transaction, a '"before image' is stored in the log file. On
the execution of a Rollback (programmed or implicit by EDM) the before
images are restored to the files, and the files are again in the
consistent state they were in at the previous Commit. The currency for
these files will also be reset to the value at the previous Commit. For
this reason it may be useful to require transaction logging for a file
opened for Input.

At the execution of a Commit, Reollback, Open or Close instruction, the
information is deleted from the log file and logging of the next
transaction is initiated.

Note that Rollback does not guarantee that the before images are
physically written back to the disk. They are restored to the intermal
buffers of EDM and EDM determines when the I/0 should take place.

If transaction logging is required for accesses on a file, it wust be
specified in the File Parameter block when the file is opened.

M2 3A 9.5.1 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.5.3 Transaction Log Information

The records of a transaction are stored in the transaction log file in
blocks of 255 bytes. The first 22 bytes contain system information. The
before~images are stored immediately after that. User records are
stored without the status byte. For before-—images longer than the
remaining 232 bytes, more blocks will be used.

The 22 bytes system information consists of the following items:

- Address of the preceding log record

- Record type, indicating: user record, index record, deleted record,
or empty record

- File identifier

= Record length

- Record address on disk

- File=type

- Number of blocks occupied by this record image

- Next free log record

The log records, which each occupy at least one block of 255 bytes, are
grouped into segments in the transaction log file. One segment contains
blocks of only one transaction.

When a transaction requires logging information to be written to the
transaction log file, one segment is assigned to the transaction. The
segment is released again at the execution of the next Commit or
Rollback.

The segment size is specified during Monitor generation and should
allow for logging of the largest transaction in the system, The size
required is found by adding the lengths of all the records that are
updated during one transaction. If during run-time a transaction can
not be logged because the segment is full, the transaction is rolled
back and the Return Status indicates "overflow" (3).

9,5.4 Transaction Log Buffers

For transaction logging, one buffer of 256 bytes is reserved in memory.

9.5.5 Transaction Log File

The transaction log file may be defined on disk, in CMOS memory or on
the "simulated disk in primary memory". It is created by EDM on the
volume specified during Monitor generation, when the application is
started. The transaction log file has the following characteristics:

Volume name : Specified during Monitor generation (default SYSRES)
File name : TLOGFILE

Record size : 255 bytes

Blocking factor: 1

Segment size : Number of blocks per segment. The total file size

is the segment size multiplied by the number of
user tasks defined. Default segment size is 30
blocks of 255 bytes.

M23A 9.5.2 June 1983

EDM EXTENUED DATA MANAGEMENT EDM

9.5.6 Initializing the Transaction Log File

The transaction log file is created by EDM during system initialization
(IPL), according to the parameters specified during Monitor generatiom.
If there is already a transaction log file on the volume specified,
this is deleted and a new file is created.

8.5.7 Function Logging

Function logging means that all functions that result in a modification
of the user files (write new records, rewrtte updated reccrds, delete
records) are logged on a function log file. After a hardware failure,
backup copies of the user files can be recovered with the utility
Recover EDM File (RCF). This utility reprocesses all functions logged
on the function log file up to the last logged Commit, Rollback or
Close. The use of the utility is described in the TOSS Utilities
Reference manual, module MBA.

The files can be recovered to the consistent state of the last Commit,
Rollback or Close. Only the transactions that were being executed when
the failure oceccurred, are lost. If function logging is required for
accesses on a file, it must be specified when the file is opened.

9.5.8 Function Log Information

Functieon log information is stored in the function lag file at the
execution of the instructions Open, Close, Commit, Rollback, Write,
Rewrite and Delete. For Open and Close, a Commit is also logged. When
the last user of a file ecloses the file, an "End of User” log record of
4 bytes is written to the log file in addition to the log record of the
Close itself.

M23A 9.5.3 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

The information logged for each function is shown in the diagram below,
where:

x = 1included
- = not included
u = included but not relevant, contents undefined.
| field | |
Function Log length Roll End of
Information (bytes) Open Close Commit back user
Function code 1 (x x x x X
Function option 1 X X X X X
Transaction ident A X X x X
File reference 1 X X - - -
Filler 1 u u - - -
File identifier 42 X -} - - -
Relative rec no. 4 - - - - -
Record length 2 - - - -
After image | rec In | - - - - -
Before image | rec 1ln - - - - -
Total length in | f
function log file (bytes) ‘ 48 6 4 4 4
| field | Standard files
Function log Iength
Information (bytes) ' Write | Rewrite Delete
___l ___‘__ -

Function code 1 X x X
Function option 1 / X X X
Transaction id. 2 ! X b X
File reference 1 X X X
Filler 1 u u u
File identifier 42 - - -
Relative rec. no. 4 X X X
Record length 2 X X u
After image rec length X X -
Before image | rec length - - -

| Total length in ! 12 12 | 12
function log file (bytes) + rec 1In + rec In

M23A 9.5.4 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

field Indexed files (EDM files)

Function log length \— -

Information (bytes) | Write | Rewrite Delete
Function code Iy ' x I X X
Function option 1 | x | b X
Transaction id. 2 | X ~ X X
File reference 1 X X X
Filler 1 (u | u u
File identifier 42 - - -
Relative rec. no. 4 , u u u
Record length 2 X X X
After image rec length X X -
Before image rec length - - X
Tatal length in 12 12 I2
function log file (bytes) + rec 1n + rec 1ln + rec In

The number of transactions that can be logged on a tape or on a disk
file with the default size of 2048 records depends entirely on the
record length and on the number and type of functions executed per
transaction,

9.5.9 Function Log Buffers

For function logging, two alternating buffers of 256 bytes are reserved
in memory.

The function log information is written to the function log file,
packed into blocks of 255 bytes. The function log blocks are shared,
which means that functions executed by different tasks may be logged in
one block, The function information itself is always stored completely
in one block, but after-images or before—images of records are split
over more blocks 1f necessary.

A block is written to the function log file on disk or tape when the
buffer in memory is full or when a Commit, Rollback or Close function
has been logged.

"Overlapping transactions in function log file" may be specified during
Monitor generation. This means that when the end of a transaction
(Commit, Rollback or Close) has been logged, the remaining part of the
block is used for the next log information. The block is written twice
to the function log file: first after the Commit, Rollback or Close,
and again when the buffer is full.In this way more efficient use is
made of the space in the function log file, but the degree af security
decreases.

MZ23A 9.5.5 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.5.10 Function Log File

The function log file may reside on tape or disk. This is specified
during Monitor generation.

The characteristics of the file are:

Volume name : apecified during Monitor generation (default SYSRES)
File name : FLOGFILE

Record size : 255 bytes

Blocking factor: 1

File size : specified during Monitor generation, default 2048

records of 255 bytes.

The blocks are written to the file sequentially. After a system
failure, the LRN of the log file is not up to date and can not be used

to find the end of the log file, Therefore, each function log block is
identified by a certification character in the last two bytes, by which
the utility RCF recognizes the valid log information.

9.5.11 Initializing the Function Log File

The way in which the function log file on disk or tape is to be
initiated at system start (IPL) is specified during Monitor
generation. There are two possibilities:

- The existing function log file is deleted and a new file is created.
The existing function log file is also deleted if it is not in a
consistent state because of a system failure.

- Function logging continues on the existing function log file.
There are two situations where this is not possible:
~ There is no existing functionm log file. A new file is created.
- The existing function log file is not in a consistent state. This
can only occur after 1/0 errors on the function log files or after
a system failure. When this is detected during initialisation the
system will halt and the SOP lamps indicate "Log file protected".

In that case the recovery utility RCF must be run and then the
function log file must be deleted.

g.5.12 Function Log File on Disk

If the function log file is on disk, the volume name must be specified
during Monitor generation. The disk must be TOSS formatted.

The function log file is created during system initialization, or the
existing file is extended during runtime. The new file or new file
extents are formatted if this is specified during Monitor generation.
Especially formatting of new file extents during runtime will slow down
the system, For that reason, formatting can be excluded, but in that
case full safety can not be guaranteed.

M23A 9.5.6 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

If formatting is excluded, more safety can be obtained by initializing
the volume with zeroes offline.

At the end of a system session, all files must be cleosed by all the
tasks that have opened them, to leave the user files and the function
log file in a consistent state.

The log files should reside on a different volume from that which
contains the user files. Otherwise, if a disk becomes unusable because
of a hardware failure, the log files can also not be accessed and no
recovery can be performed.

Logging will slow down the system because of the extra disk accesses
needed. This is especially the case, if the transaction log file and
the function log file are on the same volume, or on the same volumes as
the user files, because then the read-write head will have to shift
continually between the files.

9,5,13 Automatic Enlargement of Function Log File

During Monitor generation it can be specified that the function log
file on disk must be automatically enlarged when it is full, If this
option is included, the function log file is enlarged by EDM when
necessary and the Supplementary Return Status (see chapter 10)
indicates "function log file enlarged”. The file is enlarged with 10
percent of its size at system start, rounded upward to a multiple of
three logical sectors.

9.5.14 Function Log File Full (Disk)

When the function log file is almost full and it is not possible to
enlarge the function log file, the message "function log file almost
full" (191) is returned in the Supplementary Return Status. It is not
possible to enlarge the function log file when the automatic enlarge
option has not been included or when the disk wvolume is full,.

This Supplementary Return Status is given when there is still space to
close all the files. The files must be closed by all the tasks that
have opened them, to leave user— and function log file in a consistent
state. After that the application must ask the operator to load ancother
volume (with the same volume name), and then halt. The operator can
load the new volume and restart the system. A new function log file is
created on the new volume and logging can continue.

If no action is taken on the message "function log file almost full",
the function log file gets full. "Function log file full' (246) is
returned in the Supplementary Return Status. The current transaction is
rolled back if transaction logging is required.

When no transaction logging is provided and the function log file is
full, the user files and the function log file are in an inconsistent
state. Backup copies of the user files can be recovered to the point of
the last Commit, Rollback ur Close by running the recovery utility RCF,

M23A 9.5.7 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.5.15 Function Log File on Tape

If the function log file is on tape, the tape file code must be
specified during Monitor generation.

The function log file on tape is started during system initialization,
or logging is continued in the existing file,

At the end of a system session, all files must be closed by all the

tasks that opened them, to leave the user files and the function log
file in a consistent state, and a tape mark must be written.

9.5.16 Function Log File Full {Tape)

When the end-of-tape mark is read the message "begin/end of tape' is
returned in the Supplementary Return Status (197).

The files must be closed by all the tasks that have opened them, to

leave user— and function log file in a consistent state, and a tape
mark must be written.

It is the user’s responsibility to leave enough space after the end-of-
tape mark to log the closing of the files., The space needed is 6 bytes
for each Clase instruction plus 4 extra bytes when the last user closes
the file. This is then rounded upward to a multiple of 256. It is
recommended to reserve space for one extra block, in case the end of
tape mark was detected at the start of a block.

After the files have heen closed the operator must load another tape.
Function logging is continued on the new tape. It is not necessary to
halt and restart the system.

If no action is taken on the message "End of tape" the function log
file gets full. "I/0 error on function log file"(247) is returned in
the Supplementary Return Status. The current transaction is rolled back
if transaction logging is provided.

When this happens the user files and the function log file are in an
inconsistent state. Backup copies of the user files can be recovered
with the functien log file to the peint of the last Commit, Rollback or
Close by running the recovery utility RCF. The current transactions are
lost.

M23A 9.5.8 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.6 FILE CREATION

E-files are created either by utility Create File (CRF) or by EDM.

In both cases, the data file and index file are created at the same
time, in one step,

Data records are written to the file after creation, and for every data
record the index entry is written to the index file in the correct
place.

Up to 10 indexes are allowed for an E-file, and for every index the key
may consist of up to 16 key items. However, the total number of key
items is limited because the key descriptors together must be stored in
the first sector (256 bytes) of the I-file. One key descriptor occupies
8 + (number of items)*4 bytes. From this it fellows that it is not
possible to have, for example, 10 keys each consisting of more than 4
key items.

When a file is created, the file size is specified as a number of

records, This number is rounded upward by EDM to a multiple of three
logical sectors and of the block length. The actual size of the file
created, in number of records, is returned in the File Parameter block.

E-files can be enlarged until the maximum number of file extents (64
per volume) and file sections (4) has been reached. However, it is not

possible to have more file extents on a volume than the number of
entries in the VTOC (see Chapter 3).

9.6.1 Creating an E-file with utility CRF

A detailed description of the TOSS utility Create File is found in the
TOSS Utilities Reference manual, module M8A.

Note that the questions to describe an index, from "duplicate key" to
"key item length", are repeated for every index, and the questions
describing a key item are repeated for every key item within one index.

This means that the length of the index descriptor block of an E-file
is not fixed but depends on the number of keys and key items.

9.6,2 Creating an E~File by EDM

An E-file is created by EDM by using the Open File instruction. The
Open mode must be Output Sequential or Output Direct. The information
defining the data file and the indexes must be provided on the File
Parameter Block (see chapter 4, File Parameters).

Data records can be written to the file by the application, and the
corresponding index entries are inserted in the index file in the
correct postion by EDM. The index file will contain 50% free space or
even more, at this stage.

M23A 9.6.1 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.7 ENLARGING FILES

Automatic enlargement of files by EDM is possible for indexed and
standard files.

Files are automatically enlarged when during Write instructions the end
of the data file has been reached. A new extent is added to the file,
with a size as indicated by the Growth Factor on the File Parameter
Block, rounded upward to a file extent length which is a multiple of
three logical sectors and of the block size. The Write instructioms are
executed without the message "End of File'" being returned. New file
extents and new file sections may be added,

If an E-file is enlarged the new file extent is immediately formatted.
Standard files may be explicitly enlarged by using the Open mode
"Extend". When an S-file is enlarged the new file extend is not

preformatted. Formatting is done while new records are written to the
file and when the file is closed the remaining part is formatted.

Automatic Enlargement of I-Files

When the end of the index file is reached before the current Write
order has been completed, the I-file is automatically enlarged with the
number of sectors needed to execute the current Write order completely.
This {s also done if a Growth Factor of zero is specified. The Write
request will be completed with bit 8 set in the return code, and the
Supplementary Return Status indicating "Index file enlarged" (189).

Automatic Enlargement of Function Log File

Automatic enlargement of the funtion log file will take place as
described in section 9,5,13 if this is specified during Monitor
generation.,

M23A 9.7.1 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.8 FILE MAINTENANCE

For EDM files, maintenance in the form of reorganizing the index file
is needed less than for indexed files of S-type (in SDM). However, when
a data file has been updated by indexed direct instructions, or much
extended, the index file will contain free space within the blocks, and
consequently more index levels than is necessary. Index blocks may have
been split and become empty again.

To avoid overflow of the I-file, or long search times caused by many
empty blocks, ii is recommended to reorganize the index file with the
TOSS utility Rewrganize EDM index File (REF)}, With this utility a load
factor of 95 or 75 can be specified, by the indication "static" or
"dynamic' use.

It is recommended to specify "static" use if the file will not be
updated much, or if it is updated by Indexed Sequential operations.
"Dynamic" use is preferred for files on which many new records will
still be written by Indexed Direct instructions,

M23A 9.8.1 June 1983

R

EDM EXTENDED DATA MANAGEMENT EDM

9.9 RETURN INFORMATION

The return information generated by EDM in the Status Word, the Return
Status and the Supplementary Return Status is listed in chapter 10,
Return Information. The Status Word is obtained in CREDIT by the XSTAT
instruction, the Return Status and Supplementary Return Status by the
RSTAT instruction.

M23A 95.9.1 June 1983

