Chapter 2

DATA MANAGEMENT

2.1 FILE QRGANIZATION

The information processed by a computer generally consists of large
quantities of data which must be read, written and updated by an
application.

Data management is concerned with the possibilities and methods of
organizing data in such a way that they are accessible for different
applications.

2.1.1 Files

Related data are grouped into files. To enable an application to
retrieve data from the file, the information must be stored in the file
according to a number of rules, defining the sequence of the data and
the way of identifying them. These rules determine the file
organization.

A data file need not be a contiguous area on the disk. Separate parts
of the data file may reside on one or several volumes.

File Section

A file section is a continuation of the file on a different volume.
File sections may reside on different disk types. Up to four file
sections are allowed for a file.

M23A 2.1.1 June 1983

DATA MANAGEMENT

File Extent

A file extent is a continuation of the file in a separate physical area
on the same volume. Up to 64 extents of one file are allowed per volume.
The logical sector number of the first sector of a file extent is
always a multiple of 3, and the file extent length 1is also a multiple
of 3 logical sectors and of the block length.

2.1.2 Data-records

Data items holding information on the same subject (e.g. an account-
holder, or an article) are grouped into records. A file contains
records of the same type. Account-holders records will reside in an
account-holder file, article records constitute an article file.
In a PT5 system records on a file must all have the same length.

Status Byte

Data management adds a status byte to every record. This byte indicates
if a record is "used" or "free'.

When a file has been created and formatted, the file is preset with
empty records with a status "free'. New data records written to the
file overwrite these free records and the status byte is set to Mused".
When a record is deleted by the application its status is set to
"free".

The status byte is not inzluded in the record length for I/0, but it
must be taken into account when calculating the blocking factor.

- - - - a disk volume
i TILE FILE FILE | contains one
- or more files.

| BLOCK | BLOCK | BLOCK | BLOCK | a file
- contains blocks

- one block
f RECORD | RECORD | RECORD [RECORD | contains n
———— - —— records

- ——- - one record

| DATA | STATUS| contains n bytes

-—— - - of data, plus one
status byte.

Fig. 2-1 Data Organisation

M23A 2.1.2 June 1953

DATA MANAGEMENT

2.2 RECORD-IDENTIFICATION

Data records on a file are identified by keys. There are two methods:
- Relative Key

The records of a file are identified by their sequence number in the
file, This is the position of the record relative to the beginning of
the file, and is called the relative record number or relative key.
The first record in the file has relative key 1.

Every record can always be located by its relative key.

— Symbolic Key

For the user it may be easier to identify the record by one or more
of the data items on it. These are the symbolic keys or record keys.
For example, the key of an account heolder’s record could be the
surname, the account number or the user number, and the key of an
article record could be the article name or code, or the name of the
supplier,

2.2.1 Index File

When the application provides a symbolic key to identify the data
record that must be accessed, this has to be converted to a relative
key for the system, A table is built with one entry for every record in
the data file, holding the symbolic key and the relative key of the
data record. This table forms an index to the data file and is called
the index file.

Index Levels

In the index file there is one index entry for every data record. For a
large data file, this means a long search of the index file before the
reference is found.

To reduce search time for a record, the index file may be divided into
parts and for every part another index entry may be created. These
index entries indicate the range of symbolic keys contained by each
part of the index file. Together they constitute the "master index" or
the level 1 index. When a record must be located via a symbolic key,
the master index is searched first. The found entry points to the part
of the index file to be searched and here the pointer to the data
record will be found.

2.2.2 Prime Key

At least one of the keys must be unique for each data record. This is
the prime key. The index containing the prime key must be defined as
the first index when the file is created or opened.

The other keys are called alternate keys, and these need not be unique
for one data record.

M23A 2.2.1 June 1983

DATA MANAGEMENT

2.2.3 Duplicate Keys

For the alternate keys, duplicates are allowed: the key may have the
same value in several records. For indexed accesses on these records,
the first one is found by an indexed direct access and the others are
then accessed by indexed sequential operatiouns.

The Return Status "Duplicate Key" will inform the application that the
next record has an identical symbolic key.

2.2.4 Curreny

For every task that opens a file, data management keeps a pointer to
the current record for the task, The current record is the record last
read. The currency is updated by read instructions and it is not
affected by write instructions.

The currency allows the application to:
= read the next record

-~ rewrite the current record

— discard the current record

The currency of the data file is called the Current Record Number or
CRN.

If the file is indexed, data management also keeps an index currency,
This points to the current index entry: the index entry used for the
last read instruction via this index.

M23A 2.2.2 June 1983

DATA MANAGEMENT

2.3 RECORD ACCESS

2.3.1 Access Method

The access method is the way to find a record in the file. If the
records are identified in more than one way, there exist several access
methods for the same file.

Non Indexed Access

Access on a data file without indexes may be:

- Sequential
Records are processed in sequence of the relative key. The next
record is read or written. For Read Sequential instructions this is
the record following the record last read. For Write Sequential
instructions this is the first free record in the file, according to
the file type. File types are explained in later chapters.

- Direct
The record to be accessed is indicated by the relative key specified
by the program. Records may be accessed directly in any (random)
Sequernce.

- Current

For Rewrite and Discard instructions the current record may be
specified.

Indexed Access

Access on an indexed data file may be:

— Indexed sequential
The records are read in the sequence in which they appear in the
index file, that is, in sequence of the symbolic record key for that
index.

- Indexed direct
The record is identified by a symbolic key, either the prime key or
an alternate key, specified by the program. For some instructions
this has to be the prime key (see the instruction descriptions in
Chapter 6).

Indexed direct read with a symbolic key specified for which
duplicates exist in the file, will access the first record with that
key occurring in the file, indicating "Duplicate Key" in the Return
Status. The other records with this key may then be read with Read
Indexed Sequential. '

M23A 2.3.1 June 1983

DATA MANAGEMENT

2.3.2 Examples

Some examples of the different access methods for the file structure in
fig, 2-2:

~ Sequential Access
Sequential access on the data file will access the records
‘Clayton’, ‘Shaw’, ‘Wilcocks’, and so on, in the order in which
they appear in the data file.

= Indexed Sequential Access
To access the record in nummeric order of the customer number,
which is the prime key, they may be accessed via the index. The
records will than be read in the following order: Phyllis Wathke
022; Deborah Williams 043; Francis Dewidt 122; Ronald Williams 207;
and so on.

Relative Prime
Level 1 Level O Key Key 2 Kay 3 key
1[207 |o1 1[022 |14 1 Clayton David M | 826
2 {537 {05 21043419 2 Shaw Patrick M | 743
31732 109 312229 3 Wileocks Brian M I 657
4 (815 |13 4(207110 . 4 Coleman Jim M | 815
5 | FFF |17 —w5 | 229 {09 — 5 Anderson Ethel F | 732
6| 251 {17 6 Elech David M | 882
733012 —— |7 Watkins Thora F | 537
B

_8. 537 107 8 Smith Denis M| 791
3 1 596 | 18 | —p» 9 Lewis Peter M| 229
10| 647 |15 10 Williams Ronald M | 207
11 | 657 | 03 11 Barry Printha F | 888
12732 |05 — 12 Hillary Thomas M { 330
13| 743 102 13 Richardaon| John M| 772
14772 |13 L 14 Wathke phyllis |F | 022
15[791 |08 15 Hanhurat Donald M | 847
16 | 815 |04 16 Hartman Paul M 863
17 | 826 |01 17 Gewald Denis M| 251
18] 863 {16 i8 Burket John M | 596
19} 882 |06 19 Williams Deborah F | 043
20| 888 |11 20 Dewidt Francis F | 122

21 FFF (00

Fig, 2-2 Indexed File

M23A 2.3.2 June 1983

DATA MANAGEMENT

2.4 BLOCKING

Blocking is grouping records into larger units that are transferred
during one disk access, hecause transferring one record per disk access
is in most cases not efficient. Transfer always starts on a logical
sector boundary, so if the records are shorter or a little lomger than
255 bytes, large areas remain unused.

For every transfer the read-write head is positioned at the required
sector and transferring the records one by one means that a search time
is needed for every record. This takes more time than is necessary,
especially when the records are processed sequentially. Better use of
time and disk space is made by "blocking" the records. A block is a
number of records transferred during one disk access.

2.4.1 Blocking Factor

The number of records per block is the blocking factor. The blocking
factor is chosen by the user when the file is created. To choose a
blocking factor by which the most efficient use is made of the
available disk space, it must be noted that:

- The system adds one status byte to every data record (except for L
and X files, see chapter 7). When calculating the blocking factor, 1
must be added to the recerd length.

- Logical sector length is 256 bytes.

- Blocks always start on a sector boundary, but they may have a block
length of several logical sectors.

- File extents always start on a sector with a logical sector number
which is a multiple of three.

- The most effective disk access time is obtained when 3 logical
sectors are read or written in one access, especially when 16+80 Mb
disks are used in the PT36000 system.

- For large blocks, large block buffers are needed in memory.

2.4,2 Examples

When the record length is 40 bytes a blocking factor of 6 uses
6x(40+1)=246 out of 256 bytes per logical sector.

When the record length is 150 hytes a blocking factor of 3 uses
3x(150+1)=453 bytes out of 512, and every block occupies 2 logical
sectors. A blocking factor 5 uses 5x(150+1)=755 out of 768 bytes and
every block occupies three logical sectors. The most efficient blocking
factor in this case is 5.

M23A 2.4.1 June 1983

DATA MANAGEMENT

2.5 DATA MANAGEMENT FUNCTIONS

2.5.1 File Handling Functions

Data management supports the following functions:

Create File

A new file may be created during runtime. The file must be opened for
"Output only" and the application must supply the necessary
information such as file name, volume where the file must reside,
file size, record length, blocking factor, and the definition of
symbolic keys if it is an indexed file. In that case the index
filesare also created. As much space as is requested is reserved on
the disk and formatted with "free" records.

The following functions can be executed for an existing file:

Open File

An Open file instruction is necessary to initiate a file for access by
a task.

Disk files are held on a volume which may contain several different
files. Also there may be more than one disk volume on-line at the time,
and the data file may have index files to it that reside on a different
volume. Therefore, an Open instruction must be executed to tell the
Monitor which file is to be opened, on which volume(s) the file exist,
how many indexes are to be used and on which volume the index files are
found, before the records of a file can be used by the application.

Data Management checks if the task is allowed to open the file, and if
there is space in memory for block- and record buffers, currency and
protected-record administration.

If all requirements are met the file is apened for the task.

Read Record

Read Record is the instruction to read data from the file. The records

are read into the application record buffer.

Rewrite Record

If in the course of a transaction some of the data in a record must be
changed, this is done by the application in the application record
bhuffer. The updated record is then rewritten to the file, where it
overwrites the old one.

M23A 2.5.1 June 1983

DATA MANAGEMENT

Discard Record

A record which is no longer needed can be discarded. The data is not
physically removed from the disk but the status of the record is
changed to "free". A free record can not be read by the application.

Write Record

A new data record may be written to the file from the application
record buffer. A new record can only be written to a free record in
the file.

Extend File

If a number of new records must be written to an existing standard
file, the file may be opened for Extend. New records are written to
the free part at the end of the file.

Close File

When the task no longer requires access to the file, it must close
the file. The space reserved for buffers and administration within
the Monitor becomes available for other tasks or other files to be
opened. [t is especially important to close files which were opened
for exclusive access by the task as soon as possible, so that a
second task may them open the file.

Delete File

A file no longer meeded may be deleted from the disk. The VTOC record
for the file will then get the status "free" and the file can no longer
be accessed. Only a file that has been opened for exclusive access by a
task can be deleted by that task,

2.5.2 Sharability

A number of tasks may be using records of the same files at one time.
There must be a protection against simultaneous updating of records by
different tasks. Protection is possible on record level and on file
level.

Record Protection

- lnprotected
There is no restriction on concurrent use of the same records by
other tasks. "Unprotected'" is only allowed when the file has been
opened for input only (the records can only be read, not updated or
discarded).

MZ23A 2.5.2 June 1983

DATA MANAGEMENT

- Protected
When a file is opened protected, a task will hold the records it
accesses under Protected Access. No other task can access the record.
Other tasks may still access other records on the same file.

The records are released when the task issues a transaction control
instruction (see section 2.7) or closes the file, or when data
management releases the records automatically to prevent a deadlock
situation.

File Protection

— Exclusive
Protection on file level means that the file is attached to the task,
and no other task can access records of this file. A task can obtain
exclusive access to a file by specifying sharability Exclusive when
the file is opened. Exclusive access to a file is released by a Close
instruction.

Sharability Exclusive must be specified when the file is created or
extended, and when it is to be deleted.

2.5.3 Data Set Declaration

Data management files to be accessed by an application must be defined
by a DSET declaration in the data division, in the same way as other I/0
devices., This is described in the CREDIT Programmer’s Guide for
Elementary CREDIT, module M2Z1A.

The DSET declaration links the data set identifier used by the
application to the T0SS file code specified during Monitor generation.

Data Management file codes must be defined in Special Device Classes.

It is not possible to have common files in CREDIT applications.

M23A 2.5.3 June 1983

DATA MANAGEMENT

2.6 FILE ENLARGEMENT

File enlargement is the addition of another file extent. Both non-
indexed and indexed {not in ADM) files can be automatically enlarged
during runtime. Automatic enlargement takes place when during Write
instructions the last record of the file is written. For the details of
automatic enlargement, which are different for each data management
package, refer to chapters 7, 8 and 9.

2.6.1 Growth Factor

The size of the added file extent in the case of automatic enlargement
is determined by the Growth Factor in the File Descriptor Block. The
Growth Factor is set by the user when the file is opened. It represents
a percentage of the size of the file when it is opened. From this, the
nunber of records by which the file must be extended is calculated by
data management. This number is then rounded upward to obtain a file
extent length which is a multiple of three logical sectors and of the
block length,

If after the file has been enlarged the end of file is reached again by
Write instructions, the file is enlarged again by the same number of
logical sectors, for it is the same percentage of the length of the
file when it was opened.

The number of sectors by which the file will be enlarged is changed
when the file is closed and opened again. A different Growth Factor may
then be specified. However, if the Growth Factor remains the same, the
percentage will be taken from the new file size and also result in a
different file extent length.

Files are only extended if the Growth Factor specified is not zero.
If the file can not be enlarged, the message End of Medium is returned

when the end of the file is reached by Write instructions. The file can
not be enlarged if:

The Growth Factor is zero

- There is ne free VIOC record available for the new file extent

The maximum number of file extents (64) on a volume has been reached
and no next volume is available

- The maximum number of file extents and file sections has been reached

2.6.2 Example

A file with a size of 200 records is opened. The Growth Factor
specified is 10. During Write imstructions, the end of the file is
reached. A new file extent is automatically created by data management,
with a size of 10% of 200 records =20 records.

The sequential write operations are continued until the new end of file
is reached. Another file extent is added, with a size of 10% of the
original file size (200 records) so again 20 records.

M23A 2,6.1 June 1983

DATA MANAGEMENT

Then the file is clesed, and opened again. The size is now 240
records. The Growth Factor specified is still 10. Automatic enlargement
will be by 10% of 240 =24 records.

If, when the file is opened for the second time, a Growth Factor of 5
is specified, automatic enlargement will be by 5% of 240 records = 12
records.

Note that this is only an example to explain the mechanism. In reality
it would not be advisable to create such small file extents. Also, the
size of the additional file extents will be rounded upwards to a
multiple of three logical sectors.

M23A 2.6.2 June 1983

DATA MANACEMENT

2,7 TRANSACTION CONTROL

In a business eavironment, applications will mostly be designed to
execute transactions. A transaction is an elementary business
operation. A transaction may include one or more reads, writes and
updates of data records in a number of files.

Before and after a transaction the data in the files are in accordance
with each other and reflect a real situation. It is said that the files
are in a state of integrity. While the transaction is in progress, the
files are nmot in a state of integrity.

A series of record accesses on files, at the beginniang and end of which
the files are in a state of integrity, is called an integrity unit.

One transaction may consist of one or more integrity units.
Example

A data file contains account holders records. A certain amount of money
must be withdrawn from the balance of Mr. X and paid into the bank
account of Mr. Y.

Before the transaction Mr. X has the money and Mr. Y has not, which is
a real situation. Halfway through the transaction, when the money has
been withdrawn from rfhe balance of Mr. ¥ and not yet added to the
balance of Mr. Y, the data in the file are not in a state of integrity
as they do not reflect a real situation.

When the record for Mr. ¥, has also been updated the file is again in a
state of integrity and the transaction is completed.

The transaction in this example consists of one integrity unit.

2.7.2 Transaction Control Functions

The beginning and the end of a transaction are marked by tramsaction
control functions (Commit). All accesses on the files executed between
two transaction control functions belong to omne transaction.

Several records of several files may have to be updated during one
logical transaction, Before the transaction and after it, when all
updates belonging to one logical transaction have been executed
completely or not at all, the files are in a consigtent state.

Points in the application program where files are in a consistent state
are defined by the transaction control functions Commit and Rollback.

COMMIT terminates a transaction or subtransaction. The updates
performed are "committed" to the data file, this means that it is no
longer possible to undo the transaction. The records involved are
released and may now be used by other tasks.

See alsc the detailed descriptions of transaction control functions for
the different packages.

M23A 2.7.1 June 1983

