MEMORY MANAGEMENT

18.1 GENFRAL

Memory management in TOSS is available in four different options,
depending on the hardware installed. These options are specifiied at
SYSGEN time and their hardware requirements are as follows:-

* MMU Paging.
- UKO1 with MMU; 64 - 128kB memory.
~ 6813 with MMU; 64 - 256kB memory.

* Disk Paging.
~ 6805, 10, 12, 13, or UKOl; disk or flexible disk.

* Disk and MMU paging.
— URDl with MMU; 64 - 128kB; disk or flexible disk.
~ 6813 with MMU; 64 - 256kb; disk or flexible disk.

* Swappable work blocks.
~ 6805, 10, 12, 13, or UKOl; disk or flexible disk.

M14 T0SS Reference 18/1 November 1980

MEMORY MANAGEMENT

18.2 MEMORY MANAGEMENT UNIT (MMU)

18.2.1 MMU Structure

The Memory Management Unit is a hardware option which allows memory
addressing up tv a maximum of 256kB.

The MMU consists of a l6-register table, whose contents can be changed

by four special instructions, i.e. Table Load, Table Store, Table Luad
Register, and Table Store Register.

18,2.2 Address Translation

The CPU operates in either System mode or User mode.

In System mode, memory locations are addressed by using the whole
contents of a word, 16 bits.

This allows addressing of the first 64kB of memory and MMU is not used.
However, the system 1s able to extend its addressing by using the
extended instructions, which make use of MMU address translation.

Address translation is always performed by the MMU while the CPU
operates in User mode.

In User mode, the MMU translates the first four bits of a 16 bit
Logical Address into a six-bit physical page address (MMU-registers
having previously been loaded). The remaining 12 bits of the Logical
Address then select a 4kB slot within the selected page.)

It is important to note that the MMU addresses the whole of the memory,
not just the area above the 64kB low address space. Pages can equally
as well be placed at addresses below 64kB as above.

See figure 18.1 which illustrates MMU addressing of memory.

Ml4 TOSS Reference 18/2 November 1980

MEMORY MANAGEMENT

SYSTEM MODE USER MODE
16 Bit Physical Address 16 Bit Logical Address
4 .
Bits 12 Bits
— n's —
MMU M
alw a
d|i 4]
X
d t P 1-]
rlh h IILII / e % l.
eli 13 k
y
8|n a B
[] : y
N 4
A rF e
olk a d 5
c|b 1 d .6 !0
aly Pl Bits Bits P
t|t ale 1
ile gls 0000 s
ols als P
n————— 64 kBytes 1
a
FFFE c
e
i m
4 kBytes -t]
n
Note. t

There is no require-
ment that a page be
located above 64kB;
it may be anywhere

in the memory. (on an
appropriate boundary)

up to
256 kBytes

Figure 18.1. MMU Memory Addressing.

M1l4 TOSS Reference 18/3 November 1980

MEMORY MANAGEMENT

18.3 MMU PAGING ONLY

With MMU systems a distinction is made between logical memory and
physical memory.

Logical memory is an area addressed in user mode containing data, code
pages, etc. These data and code pages are not necessarily contiguous
physically.

The transformation of a part of logical memory into physical memory is
a function of the MMU,

At any oune time 64kB of memory are directly accessible.

The contents of the MMU is called the task window. When CREDIT is used
a number of entries in the MMU table are used for data, interpreter,
etc. and some entries are left for a code pages. One code page at a

time is present in the task window. Which page this is can be found via
the segment block address in the task table (TTR:SB in TTAR).

Since all pages are stored in memory when only MMU paging 1is used, each
segment block (SEGBLK} has a corresponding pageblock (PAGBLK). The
tables which map these blocks, SEGTAR and PAGTAB, are never changed
after program loading. For detalls of SEGTAB and PAGTAB, see section
18.6.

The code page entry in the MMU table and the segment base in the task
control area (T:Axxy for CREDIT) are changed to point to the new code
page when a branch 1s performed from one code page to another. This
request is performed without any task awitching, which makes it
considerably faster tham it would be otherwise.

Ml4 TOSS Reference 18/4 November 1980

MEMORY MANAGEMENT

18.4 DISK PAGING, NO MMU (64kB memory)

After allocation of memory for the different tables and work areas, the

rest of the memory
decided at linking

The loading of the
nonitor. Pages are
priority level, or

is divided into code pages. The size of a page 1is
time.

program into these pages is then controlled by the
only overwritten between task switches on the same
on request from the active task. This implies that

the number of pages must be at least equal to the number of different
task priorities in the system. The loading process is controlled by a
special load task running at priority level 49. Application tasks may
be running when the load task is executing disk I/0.

The monitor keeps a segment table in memory, SEGTAB, which contains one
entry for each segment in the program. Each entry contains information
about whether the segment is loaded or not, where it is loaded, PAGTAB,
disk address, queue polnters, etc. The new segment address is stored in
TTAB and the task control area, Ti:Axxy.

Ml4 TOSS Reference 18/5 November 1980

MEMORY MANAGEMENT

TTAB
| |
I
[TTB:SB }
I !
f I
| ! SEGTAB
| }
| | | |
I | 0 | |
N
I | 1] ham
I l | [
] PB |
| i
2 | I
| |
| o I
Physical
[|) | Code |
! PA | | I
N |
[I ! |
| | | Code |
| I | Pages |
] ! i I
! | |
| | | |
)) } }
PAGBLK PAGBLK
| PAGQUE |[=——3| PAGQF [————3| PAGQF [—_
. | I I - [
i I\i PAGQB |\| PAGQB |
1 b1 I !
\ ! PAGPA ! 1 PAGPA {
| PAGSB 1 | PAGSB |
| I ! I
LRU

Figure 18.2. Page Queue and Associated Control Blocks.

Ml4 TOSS Reference 18/6 November 1980

MEMORY MANAGEMENT

A page currently being used by a task active in the CPU is called
active. All other pages are called inactive, and are placed in a page
queue (PAGQUE}. When a new segment has to be loaded, space is allocated
by taking out one page from this queue using a Least Recently Used
(LRU) basis (figure 18.2).

1f the requested segment is already present in memory and inactive,
then the corresponding page 1is taken out of the page queue and set
active.

The page queue is normally updated each time task switching occurs,
which is much more often than segment loading occurs, so that the
system can react dynamically to changes in workload conditions.

1f the new segment is in the page queue no task switching is performed.
If the new segment has to be loaded from disk, then task switching is

necessary. See figure 18.3.

CORE PAGTAB SEGTAB

T:A

|

N\

| ¥ b
Code Page |

|
|
|
1
% | {]
| vl
|
1
|
l
|
|

Fipure 18.3. Segment Loading from Disk.

Ml4 TOSS Reference 18/7 November 1980

MEMORY MANAGEMENT

18.5 DISK AND MMU PAGING TOGETHER

When both disk paging and extended memory are in use, both previously
described methods are combined.

The new segment can either be in extended memory or on disk. 1f it is
in extended memory the loading function is the same as when only MMU

was used, and if it is on disk it will be the same as if only disk
paging was used.

|
|

USER AREA PHYSICAL SEGTAB

T T :Axxy T . .

| | i |

| ! | | | |
| | i ! |

B I R
IR e s gl
IE;he Pagei {Code Page{ % | | =)f
I o |

J ! [[| | |
! | ! A ! [
] I ! ! I
- - J [|

Figure 18.4. Combined Disk and MMU Paging.

18.6 MONITOR TABLES USED BY MEMORY MANAGEMENT

Two tables are central to the memory management system. They are:-

* SEGTAB, the Segment Block Table, which contains segment blocks
(SEGBLK’s). Each SEGBLK describes, for example, the status and
location of a segment.

* PAGTAB, the Page block table, which contains page blocks
(PAGBLK s). Each PAGBLK contains, for example, the location of a
page in memory {physical address) and a pointer to the
caorresponding segment block.

Each SEGBLK is related to one segment; SEGBLK 0 helongs to Segment 0,
SEGBLK 1 helongs to Segment 1, etc. Each PAGBLK is related to one page
in memory; the first one is Page 1, the details of which are defined in
PAGBLK 1.

Ml4 TOSS Reference 18/8 November 1980

MEMORY MANAGEMENT

18.6.1 Segment Block Table (SEGTAB)

Each segment is described in a segment block, SEGBLX. All segment
blocks are contained in the table SEGTAB which is built by the system
loading program, SYSLOD, at configuration time.

SEGTAB

-4 | SEG:FC | file code of segment device
|

-2 | SEG:NO | Number of sepments
|

0 |SEG:ST| | status (/84 for segment zero)
| } { (8 bits)

SEGBLK O | SEG:DS | logical address (in common part)
| | (24 bits, lst B bits 0 for segment 0)
| SEG:EL | not used
|
[SEG:FB (0)| page block address (none)

I !
[SEG:ST| | segment status
| I |

SEGBLK 1 | SEG:DS | disk address (if disk paging)
| |
| SEG:EL | effective length (bytes/segment)
I |
| SEG:PB | page block address
| |
| [
| |

SEGBLK 2 | [
| |
!

l

-~

M1l4 TOSS Reference 18/9 November 1980

MEMORY MANAGEMENT

SEG:ST Contains the status of the segment. The bits have the following
meanings when set:-~

Bit
Bit

Bit

Bit

Bit

Bit
Bit
Bit

0 : The segment is in memory.

1

2

3 .

5
6
7

¢ Loading of this segment is in progress; set and reset

by the load task.

Segment locked, e.g. by the CREDIT debugger; it cannot
be overwritten in memory.

Used to indicate that a task on a higher pricrity has
interrupted this task. The page will not go into the
page queue until the lower priority task has returned
to it. After that a2 LKM will cause it to be queued. In
this way the page 1is prevented from moving to different
areas of memory.

: Core resident. The segment can not be overwritten in

memory .
Common segment (segment zero).

: Not usged.
: Disk 1/0 error (seek, CRC, or not operable).

SEG:DS Bits O ~ 7 : Contain zerces for segment zZero;
For other segments bits 1 = 23 contain the disk sector addresgs
at which the segment starts (bit 0 is always 0); all zeroes if
disk paging 18 not used. Contains the logical address for
segnent zero in a disk paging system.

SEG:EL Effective length in bytes of the segment.

SEG:FB Pointer to corresponding page block.

M14 TOSS Reference 18/10 November 1980

MEMCRY MANAGEMENT

18.6.2 Page Block Table (FAGTAB)

Each page in memory is described in a page block, PAGBLK. All page
blocks are contained in the page block table PAGTAB which is built at
configuration time by the system loading program, SYSLOD.

PAGTAB
| PAG:QF | queue pointer forward
| I
] PAG:QB } queue pointer backward
PAGBLK 1 | I
| PAG:PA | page address (most significant bits)
|
| PAG:SB | segment block address (if page is
| | free, zero)
I |
l {
| |
PAGBLK 2 | I
! |

PAG:QF Pointer forwards in the page queue, PAGQUE. If the page 1s not
in PAGQUE, this word contains zero.

PAG:QB Pointer backwards in the page queue, PAGQUE.
PAG:PA Physical page address in memory; 6 most significant bits.

PAG:SB Puinter to the corresponding segment black. If the page Is
free, this word contains zero.

M1l4 TOSS Reference 18/11 November 1980

MEMORY MANAGEMENT

18.6.3 Swappable Work Block Table (SWRBTAB)

When swappable workblocks are used, the system loading program (SYSLOD)
builds tables which have the following layout:-

SWBTAB
number of types of SWB's
pointer to a block of the first type

pointer to a block of the second type

P — ——_————
S S, S—

number of copies (8 bits)

disk address of first copy (23 bits)
length in bytes

length in sectors

e ey e
[
3
]
£
e e

The swappable workblock type is defined in the application by the ‘SWB”
declaration.

SWB:NC Number of copies of this type of swappable workblock.

SWB:DS Disk sector address of the first copy of the swappable
workblock of this type.

SWB:EL Length of one copy of the swappable workblock of this type in
bytes.

SWE:NS Number of sectors occupied by ome copy of the swappable
workblock of this type.

M14 TOSS Reference 18/12 November 1980

MEMORY MANAGEMENT

18.7 1/0 HANDLING IN MMU SYSTEMS

The monitor resides In an address space comprising the first 64kB of
physical memory. Due to this hardware limitation and the demand for
fast response to interrupts, most devices have their own I/0 buffer
placed in the system area.

At activation or comwpletion of an I/0 request, a transfer is made
between the user and the device buffer. In most cases this is handled
by the I/0 initialization and terminating modules (TIC and TENDIO).

The user interface is the same whether the MMU option 1s used or not,
but the device buffers are present only if MMU is implemented.

I/0 requests are of several different types, defined by the order and

the driver type. When the system itself performs an I/0 request, the
interface 1s exactly as in the non-MMU case.

18.7.1 Normal Output Request

This request is used when writing character-by-character, for example
on the following devices:-

* GP General Printer.

TP Teller Printer.

DY Display.

TC Cassette.

LF Line Printer (programmed channel or IOP).
FD Flexible Disk {(programmed channel or IOP}.

L I B N

Each DWT has its own buffer and ECB, and TIO transfers the contents of
the user ECB and buffer to the DWT. TENDIO performs the update af the
uger ECB.

18.7.2 Normal IOP Output Request

This request is used when writing in block mode, for example on:-

* DU Disk.
* MT Magnetic Tape.

TIO assembles the full 18-bit buffer address and the driver transfers

it to the IOP. Each DWT has its own ECB to which TIO transfers the user
ECB. TERDIO performs the update of the user ECB.

Ml4 TOSS Reference 18/13 November 1980

MEMORY MANAGEMENT

18.7.3 Normal Input Reguest

This request is used when reading characrer-wise, fur exawple on:-

* KB Keyboard.
TC Cassette.
CR Card Reader.

FD Floppy Disk (programmed channel or IOP).

L B

Fach DWT has 1its own buffer and ECB, and TIO transfers the contents of
the user ECB to the DWT. TENDIO transfers the data from the DWT buffer
to the user and updates the user ECB.

18.7.4 Normal IOP Input Request

This request is used when reading in block mode, for example an:-

* DU Disk.
* MT Magnetic Tape.

TI0 assembles the full 18-bit buffer address and the driver transfers

it to the T0P. Each DWT has its own ECB to which TIO transfers the user
ECB. TENDIO performs the update of the user ECB.

18.7.5 Data Communications Input Request

This request is used when reading on:~
* DC Data Communications.
Each DWT has its own ECB to which TIQ transfers the user ECB. The

driver has a set of buffers and a special wmomitor routine, DCiMIN,
transfers the data from the driver buffer to the user buffer.

18.7.6 Data Communications Output Request

This type of request is used when writing an:i-

* DC Data Communications.
The driver keeps one write buffer and, before writing (after poll), a
special monitor routine (DC:MOT) is called to transfer the data. Each

DWTI has its own ECB to which TIO transfers the user ECB. TENDIO
performs the update of the user ECB.

18.7.7 Control Requests

This type of request is used when performing a control request (DSCx in
CREDIT) on a device. No buffer is needed. Each DWT has its own ECB to
which TIO transfers the user ECB. TENDIO performs the update of the
user ECB.

M14 TQ3S Reference 18/14 November 1980

