THE DISPATCHER

14.1 GENERAL

Previous chapters have described the way in which Interrupts (LKM
requests, completion of I/0 action, etc.) are processed by the Monitor.
When the processing of an interrupt 1s complete, control is handed to
the Dispatcher, which then determines which application or Monitor
tasks are able to proceed. If several tasks are able to proceed, a task
is chosen on a "First-In-First-Out’ basis within priority level.
Registers Al to Al4 are restored for this task and the task is entered
via a RTN instruction.

The RTN instruction automatically enables interrupts to occur. Any
interrupt of an equal or lower priority which occurred during the
pracessing of the last interrupt would have been queued. On the RTIN
instruction being executed this interrupt will take effect immediately
and control will again be passed to an interrupt handler.

However, if no interrupt has been queued, the task will begin
execution. Execution of the task will continue until amnother interrupt
occurg (which may of course be an LKM instruction executed by the
task). When processing of this interrupt has been completed the task
will again become a candidate for scheduling, and so on.

A task may exit by issuing an LKM request type 3 (EXIT). The dispatcher
will then delete all record of the task and the task will cease to
exist. The task can be activated again (from another task) but the
register contents will then be undefined except for the contents of
registers used for passing parameters.

In order to identify and schedule tasks, each task must have a task
identifier and priority level. Application tasks must be assigned a
task identifier and priority level during system loading (SYSLOD).
Monitor tasks (e.g. data management task, segment lvoading task) have a
predefined task identifier and priority level and need not be specified
during system generation. These task identities are preceded by #.

Ml4 TOSS Reference 14/1 November 1980

THE DISPATCHER

Scheduling of tasks by the LKM processors and Diaspatcher is 1illustrated
in figure 14.1.

The following notes refer to the numbers in the diagram:-

1. The dispatcher selects the next task to be dispatched by
inspecting the dispatcher queue and taking out the task of the
highest priority present which has been the longest time in the
queue, l.e. the scheduling 1s performed in FIFO (First-In-First-
Out) basis per level.

2. When a task is activated or restarted it is inserted in the
dispatcher queue at its priority level, and within that level,
put last in the queue.

3. When a task tries to activate another task which s already
active, the request is put in the pending queue (Hot the task).

4. When the running task performs an exit, the pending queue is
checked, and if there is a pending request for the exiting task,
then that task is reactivated (see 2).

5. When the running task issues an I/0 LKM (with wait), for
example, the task will not be considered for dispatching until
the I/0 is completed. Meanwhile, the dispatcher selects another
task according to 1.

6. When the event that the task was waiting for is completed, the
task is inserted in the dispatcher queue according to the
principle described in 2.

7. A task may perform the request “Switch task on same level’,
which means that the task is put last in the queue within its
level, and the next task on the same level is dispatched.

The situation may also arise in 1 that the dispatcher queue is empty,
i.e. all tasks are waiting for events to be completed. Then the monitor
is “idling” in the “idle loop” {(priority level 63) waiting for an
interrupt to occur. The interrupt handler will finally pass control to
the dispatcher, after having queued the requesting task in the
dispatcher queue.

In MMU systems, the dispatcher takes care of the loading of the MMU
with the contents of the MMU table in TTAB for the task to be
dispatched. 1t also checks that the requested code segment is situated
in memory, and if it is not, the dispatcher will request loading of the
code segment before dispatching the task. When a task is queued in the
dispatcher queue, the contents of the MMU table are saved in the task
table (TTAB).

Ml4 TO0OSS Reference 14/2 November 1980

THE DISPATCHER

DISQUE is the queue anchor of the dispatcher queue.
this word refer to the first task table (TTAB) in th
The first word in TTAB is designated TTB:QL and,
zeroes, indicates the end of the dispatcher queue.

|
I
|
I
|
|
|

e

queue is empty, word DISQUE contains zero.

Ml4 TOSS Reference

14/3

2
—
. DISPATCHER QUEUE
i
I
7
RUNNING
EXIT 4 TASK
PENDING QUEUE 3
(request Q'd)
6 TASKS AWAITING COMPLETION 5
OF AN EVENT D
Figure 14.1. Task Scheduling.
14.2 THE DISPATCHER QUEUE
| |
[DISQUE |
| |
| TTAB] TTABn
J
Ve > TTB:QL [===/ f=~===> zeroes |
- N |

|
|
|
!
!

The contents of

e dispatcher queue.
when it contains

When the dispatcher

November 1980

THE DISPATCHER

14.3 THE PENDING QUEUE

TTAB

| | Pointer to next
|] Blocks in Queue

-~

| | Parameter Block
| Pending |
| Pointer |
| TTB:PP |
J |
I |
| |

|

|

i
Pointer to 2nd |
|

|
Param. 1]
i

Segment
Number

|

| |

o

| Dispateh |

! f | Address |
| |

l [

| |

| |

Param. 2

When a task is activated, and the task is already active, i.e. already
in the dispatcher queue, then this activatlon request 1s put into the
pending queue. Six words (2 times three blocks) are obtained from the
monitor block pool and pointed to by the word TTB:PP in the task table.
These words contain information required to activate the task after an
EXIT is performed by that task. When the word TTB:PP contains zero, the
pending queue does not have to be checked. Insertions in the pending
queue are done on a FIFO basis, except for data management tasks, for
which the basis is LIFO.

The meanings of the words are as follows:-

* Popinter to next blocks in queue.
This word contains a pointer tuo the next pending request in the
queue; end of queue when zero.

* Pointer to Z2nd parameter bluack.
Pointer to the second block, which contains more information
about the pending request.

* Segment number.
This word contains the segment number in which the activation
address (dispatch address) is held.

* Dispatch address.
This word contains the dispatch address within a segment.

* Parameters 1 and 2.
Two parameters available to the TO0SS monitor.

When an EXIT is performed the pending queue is checked and the blocks
released.

Ml4 TOSS Reference 14/4 November 1980

THE DISPATCHER

. DISPATCHER QUEUE
e
1
7
RUNNING
EXIT 4 TASK
PENDING QUEUE — 3
(request Q'd)
6 TASKS AWAITING COMPLETION 5
OF AN EVENT
Figure l4.l. Task Scheduling.
14.2 THE DISPATCHER QUEUE
I |
| DISQUE |
I |
| TTAB1 TTABn
f —
S . > TTB: QL | ===/ /=> zeroes

oo —— e ——— —

~ -~

DISQUE is the queue anchor of the dispatcher queue. The contents of
this word refer to the first task table (TTAB) in the dispatcher queue.
The first word in TTAB is designated TTB:QL and, when it contains
zeroes, indicates the end of the dispatcher queue. When the dispatcher
queue 1s empty, word DISQUE contains zero.

Ml4 TOSS Reference 14/3 November 1980

THE DISPATCHER

14.3 THE PENDING QUEUE
TTAR

| | Pointer to next
| i | Blacks in Queue
- - !
- ~ | Pointer to 2nd
| | Parameter Block
| Pending |
| Pointer | Param. 1
| TTB:PP |

}o——
§— e ——

}
I
|
I
I
I
I
|

|

|
-
Dispatch |

I

|

I

l

|

Segment
Number

Address

Param. 2

When a task is activated, and the task is already active, i.e. already
in the dispatcher queue, then this activation request is put into the
pending queue. Six words (2 times three blocks) are obtained from the
monitor block pool and pointed to by the word TTB:PP in the task table.
These words contain information required to activate the task after an
EXIT is performed by that task. When the word TTB:PP contains zero, the
pending queue dues not have to be checked. Insertions in the pending
queue are done on a FIFD basis, except for data management tasks, for

which the basis is LIFO.

The meanings of the words are as follows:-

* Pointer to next blocks in queue-
This word contains a pointer to the next pending request in the

queue; end of queue when zero.

* Pointer to 2nd parameter block.

Pointer to the second black, which contains more information

about the pending request.

* Segment number.

This word contains the segment number in which the activation
address (dispatch address) 1s held.

* Dispatch address.

This word contains the dispatch address within a2 segment.

* Parameters 1 and 2.

Two parameters available to the TOSS monitor.

When an EXIT is perforwed the pending gueue is checked and the blocks

released.

M14 TOSS Reference

14/4

November 1980

