INTERRUPT HANDLERS

An “interrupt’ is an event which causes control to be passed, at the
completion of the current instructionm, to an address held in one of the
‘interrupt vectors’ in memory words 0 to 63. For example:-

* Power failure.

LKM request.

Real time clock update.

Completion of I/0 action.

Attempted Executlon of an illegal instructionm.

E

The particular vector used depends upon the type of interrupt. Each
vector contains a pointer to an associated “interrupt handler’.

For example, memory word O 1s the interrupt vector for power failure.
When power failure ovccurs the sequence of instructions currently being
executed is interrupted, and controel is handed to the instruction
polinted to by memory word O {the power failure interrupt handler).

When an interrupt occurs the currently +: :vted instruction is always
completed before contrul is passed to the apprupriate interrupt
routine. All interrupt routines pass control to the dispatcher when
their actions are completed. An interrupt is also generated in the
event of system stack overflow (the stack 1s pointed to by Al5). This
will cause a system halt hecause processing can not be allowed to
continue as the consequences are unpredictable.

As can be seen from figure 12.1, the interrupt handlers in boxes 1, 2,
& 4 are self contained; they do not call any subsidiary modules. The
handlers in boxes 1 & 2 terminate by halting the machine. The handler
in box 4 terminates by branching to the dispatcher (box 38).

The interrupt handler for the real time clock (box 3) activates a
special clock task (box 43) evevy 100 ms. The hardware interrupt occurs
every 20ms. The handler terminates by branching to the dispatcher (box
38). The interrupts generated duviug I/0 operations are serviced by the
appropriate device driver (eg. lLox 25).

At completion of the I/0, the Jriver calls TENDIO (in module TOSSIO)
before branching to the dispatotor.

The interrupt handler for LKM requests processes only request type (.
The interrupt handler saves registers Al to Al4 in the task table
{TTAB) of the current task and, if necessary, branches to one of
several LKM processors in order to process the remaining types of LIM
requests.

Ml4 TQOSS Reference 12/1 November 1980

INTERRUPT HANDLERS

IPF lntcrl’llp[—l IKH interrupr] BT ln[:-rru;[—j
1llegal Tllepal op code L l_

intertupts interrupr
| 1
t LRPINT
HSURE IHIKPT LRFINT : Interrupc handlers for LKIs, real rime clock and power Fallure.
Entry ILLINT Interrupt handler
Interrupt handler Eor illegal op IHRTC ¢ updates veal time clock and activates CLOCK task.
for iljegal codes (subroutlne 3
interrupts call dnterpreter) THPFAR ¢ handles power faliurc and reptare (uses PFTAR to calt
L 2 power failure rourine).
IM.EH & tests YEqUEAL Lype, prOCESKes TEQUEBt typa [(Swifch Lnsks)
ar branchea to LKM processor if nat type G. 5
P) - [R F o)]
LK TABORT TSWEL TIMER TPROC
for LRM processors LK processor for LK procrssory LK processor tor: L¥H pracessars for:
loading a segment Eor: abortinr an 1/0 fors
Activates LDTASK reguest P———-————] [Pelay / Delay & Acrivate and restart
{Requesar type 93 Change M0 page (Request tvpe 10N l.oad awappable Activatlon Request types 4,-41
Entry TLDSEG & (Request type 17} Entry TARORT 4 workbiock (Request types ,-5) Entry TACTLT i5 l
Entry TCHPAG ? (Request type 19} Entry TINER 12 Wait
Change MU rablo Fotry TSRRLK 10 | [WRTIR 1 (Fequest rype 2) ;
{Pequest type IK) StoTe swappeble ILKM processote for: Entry THAIT 16
Entry CHHMU R workblock Fxit |
{Bequest type 20) Get time (Request type 1}
Entry 11 Pequest type 12) Entry TEXIT 17
Eotry GETTEM 13 Pausc TOSSIN
set fime {Pequest tyoe 5) LK1 processor far
(Request type 13} Fntry TPAUSE 18 Input /Dutput
Fntry SETTIH 14 MuTtinle wait iRequest types L,~I,
(Foquest tyne 7) 15}
Encry THMiIAGT 19 Entr 710 20
I l
—_— — = _— — J— —_— —_— —_— —_— " — — —_—] — — ,— — — - — _— e —
PTS 6800 l | PTs5 BOuao
TOSSFH TI0DM DBRESD! DRUPOI DRIV ORDCnn prapaz |1 mEpiar DREBO3 DRLYAL DETPO] DRTENZ DRCPOL
File Dara Keyhoard Ceneral Msk Nata Hardware 1/n Geperal | Intsplay Keyboard [| Plsplav | | Teller Teller ||Genaral
Hanagement Hanagement driver Terninal Drive Corns Interrupt Terminal}[Indjcator|| driver driver Frinter | | Printer||Terminal
driver, driver. Frinter driver driver I f Printer driver driver driver Frinter
Activates Activares detver driver driver
FHTASK or DMTAS K The inclusion of
Misk driver | Erivers in the |
21l 22 23 24 2R Monitor dependa on 27 2] 29 30 3l 32 2

the hardware con-

figuration in the
B¥star. A saleci—

Lion of drdvers is

! shows in the boxes
[— | % - I | T
Iriver Selectior
Switch "fodule | ' MERFIE
34 Teresi
Terrinal
I | Triver

sl

TRRTL] | BALCEZ 473
1/0 driver for Local 16 iz
and Remote Terminals ' !

33
b 4 - - Al __l_.___l l_‘_____ﬁ__.;__ — e —
¥ lse
all tasks an 0 “Tirst in fitst our® hasis Withisn prioricy
14

'__ MONITOR NUCLEL'S

AFPLICATION Taghs

I R'IASE

Applicatton rasks ELC CLory LOTASH PFTASK
Bormal pricrity T debapgang File rmanapement Trata Managenent Feal time :lock Segment laading Pouer failure
3l~A2. These rasws rasy ! task for oadmip- ©rask, identity Lask tash task

may include the Task Jdeacity 1§ stration funct=- LILNE S W 1 Tdenvicy - Lirptity #I [denediey &2
CREPIT interpreter Priavity 5% l ions. Prinricy 49 frioriiy au Priority 0

or addirional Task 14 #a This task calls

functfons. Priortey 50 TOSSFH wia LEM

Fleatin arsh reque st 15
driver wia g

Aty ai il

Figure 12.1. TOSS Component Overview.

Ml4 TOSS Reference 12/2 November 1980

