INTERRUPT HANDLERS

An “interrupt’ is an event which causes control to be passed, at the
completion of the current instructionm, to an address held in one of the
‘interrupt vectors’ in memory words 0 to 63. For example:-

* Power failure.

LKM request.

Real time clock update.

Completion of I/0 action.

Attempted Executlon of an illegal instructionm.

E

The particular vector used depends upon the type of interrupt. Each
vector contains a pointer to an associated “interrupt handler’.

For example, memory word O 1s the interrupt vector for power failure.
When power failure ovccurs the sequence of instructions currently being
executed is interrupted, and controel is handed to the instruction
polinted to by memory word O {the power failure interrupt handler).

When an interrupt occurs the currently +: :vted instruction is always
completed before contrul is passed to the apprupriate interrupt
routine. All interrupt routines pass control to the dispatcher when
their actions are completed. An interrupt is also generated in the
event of system stack overflow (the stack 1s pointed to by Al5). This
will cause a system halt hecause processing can not be allowed to
continue as the consequences are unpredictable.

As can be seen from figure 12.1, the interrupt handlers in boxes 1, 2,
& 4 are self contained; they do not call any subsidiary modules. The
handlers in boxes 1 & 2 terminate by halting the machine. The handler
in box 4 terminates by branching to the dispatcher (box 38).

The interrupt handler for the real time clock (box 3) activates a
special clock task (box 43) evevy 100 ms. The hardware interrupt occurs
every 20ms. The handler terminates by branching to the dispatcher (box
38). The interrupts generated duviug I/0 operations are serviced by the
appropriate device driver (eg. lLox 25).

At completion of the I/0, the Jriver calls TENDIO (in module TOSSIO)
before branching to the dispatotor.

The interrupt handler for LKM requests processes only request type (.
The interrupt handler saves registers Al to Al4 in the task table
{TTAB) of the current task and, if necessary, branches to one of
several LKM processors in order to process the remaining types of LIM
requests.
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Figure 12.1. TOSS Component Overview.
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