PHILIPS

PTS 6800 TERMINAL SYSTEM

User Library

PTS 6800 ASSEMBLER

PROGRAMMER’'S REFERENCE
MANUAL

Part 3

Module M0O6

eritips] Data
% Systems

Date : January 1978

Copyright : Philips Data Systems B.V.
Apeldoorn, The Netherlands

Code : 5122 993 42131

PTS 6800 ASSEMBLER PROGRAMMER’'S REFERENCE MANUAL—-PART 3

PREFACE

The Assembler Programmer’s Reference Manual provides the information required to write,
process and test Assembler application programs for the PTS 6800 computer used in the
Philips PTS 6000 Terminal System.

information is divided into three parts as follows :

Part 1 : Assembler Language
Additional functions
Recommended techniques

Part 2 : Monitor requests
/O drivers
TOSS utilities

Part 3 : Assembler processor
TOSS system start
Assembler debugging program

Parts 1 and 2 contain the information needed to write an Assembler program. Part 3 contains
the information needed to process and test an Assembler program.,

Processing of Assemkler programs (updating, assembling, etc.) is done under DOS 6800 System
Software, The use of those parts of DOS 6800 System Software designed specifically for
Assembler programs is described in Part 3 of this Manual. Information concerning the use of the
general purpose components of DOS 6800 System Software is contained in the DOS 6800 System
Software PRM {M11}. Readers of the present Manual are expected to be familiar with the contents
of the DOS 6800 System Software PRM.

The testing and production running of Assembler application programs is done under TOSS System
Software. Information concerning TOSS System Software which is relevant to the writing, testing
and running of Assembler application programs is included in Part 2 of the present Manual.

0.0.0.
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—FPART 3

CONTENTS

PREFACE
1. INTRODUCTI{ON

2, ASSEMBLER PROCESSOR
2.1. General
2.2, lnput

2.3. Output

3. TOSS SYSTEM START

3.1. General
3.2. System Start Procedure

3.3. Deferred binding of Monitor Configuration Data

4, ASSEMBLER DEBUGGING PROGRAM

4.1, Introduction
4.2. Using DEBUG
4.3. DEBUG Input

4.4, Running DEBUG

APPENDIX A : MEMORY ORGANIZATION
A.1. Memory Layout

A.2. Interrupt System

oat
January 1878

Date

Jan,

Jan

Jan.

Jan.
Jan,
Jan.
Jan,
Jan.
Jan.
Jan.
Jan,
Jan.

Jan.
Jan.
Jan.
Jan.
Jan,
Jan.
Jan.
Jan.

Jan.
Jan.
Jan.
Jan.
Jan,
Jan.
Jan.
Jan,
Jan.
Jan.
Jan.
Jan.
Jan.

Jan.
Jan,
Jan.

1978

. 1978
1978

1978
1978
1978
1978
1978
1978
1978
1978
1978

1978
1978
1978
1978
1978
1978
1978
1978

1978
1878
1978
1978
1978
1978
18978
1978
1978
1978
1978
1978
1978

1978
1978
1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

1. INTRODUCTION

An Asses *ar program may be input to the PTS 6000 system via any input device. After input,
the source module is held on disk,
All processors and utilities mentioned in the flow-diagram read input from disk and write output

to disk.

The following diagram illustrates the sequence of processes needed to develop and run an execu-
table program from Assembler source modules,

Each source module Is processed separately by the Assembler,
The Assembler produces abject code modules. Each module may contain references to :

— Labels in the same module
— Labels in other Assembler modules
— Assembler System routines

These references are satisfied by the Linkage Editor. This processor builds an application load
module from the following object modules :

— Assembler application modules
~— Assembler system routines (if referenced)

The output result is an appiication program load module. This module may be stored on magnetic
tape cassette, TOSS formatted disk, or flexible disk.

The Assembler and Linkage Editor are run under the DOS 6810 Monitor.

The Load module produced by the Linkage Editor, however, must be run under the TOSS Monitor.

1¥ any application program errors are detected during testing, one or more source modules will have
to be corrected. This may be done via the Line Editor — an interactive text editor.

Each corrected source module must be reprocessed by the Assembler, then the whole program must
be processed by the Linkage Editor.

The Assembler Debugging Program, if required must be linked to the TOSS Monitor during system
generation, The Debugging program is an interactive diagnostic routine which enables the programmer
to monitor and control the execution of his program. Contrai is handed to the Debugging program
immediately after the TOSS Monitor and application program are {oaded into memory {system
start).

Information concerning TOSS System Software which is needed by Assembler programmers is con-
tained in this Manual,

The Assembler processor, though part of DOS 6810 System Software, is discussed in this Manual
because it is used by Assembler programmers only.

The remaining DOS 6810 System Software components used by Assembler programmers, notably
the Linkage Editor, are described in the QS 6810 System Software PRM (M11).

1.01
Janvary 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

SOURCE
LINE EDITOR SOURCE INPUT
MODULES DEVICE
y
ASSEMBLER
CORRECTIONS
PARAMETERS OBJECT ASSEMBLER
MODULES APPLICATION
MODULES
ASSEMBLER
SYSGEN A SYSTEM
ED ROUTINES
TOSS—MONITOR APPLICATION
LOAD PROGRAM
MODULE LOAD MODULE
LE MON/PROG CASSETTE
$PFLEX FLEXIB LOADING $PCAS
DISK FROM ?
_DOsesto _
TOSS *
LOAD MON/PROG
ON DISK
WITH TOSS
UTILITIES
TOSS
MONITOR
MEMORY
APPL)-
CATION
PROGRAM
1.0.2

January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

2. ASSEMBLER PROCESSOR

2.1. General

An Assembly code program may be input to the PTS 6000 System via an input device. After
input the source module is held on disk, either in a library or a tempaorary source file {/S),
according to the programmer’s requirements. The Assembler processor is heid in the system
library, |t operates under control of the DOS 6810 Operating System and translates source
modules from disk and outputs an object code module to disk. The object module can then
be linked with other object modules using the Linkage Editor (see PTS 8000 System Software
PRM, M11).

Figure 2.1 shows the sequence of events needed to develop and run an executable program
from Assembly source modules.

Each source module is processed separately by the Assembler which produces object code
modules. The instructions in these modules use a byte-oriented addressing system. Each module
may contain references to :

— Labels in the same module

— Labhels in other Assembly modules
— Application modules

— System routines

The Assembler processor aptionally gives a listing of the program being processed, This listing
provides the programmer with all the information he requires for a full record of the program :

— A line count in decimal

— Location counter in hexadecimal

— Hexadecimal representation of the instruction
— Type of address reference

— Source code statement

— Programmer’s comments

— An error code at the place an error occcurs

— Table of external labels

— Symbol table

— Total error count

The Assembler DEBUG program can be specified at systern generation time if required, DEBUG
is an interactive diagostic task which is executed in paraliel with the Assembly program being
tested. With DEBUG the programmer can monitor and control the execution of his program,.

When ervors have been discovered, the programmer can use the Line Editor to update the module
with the correct statement {see DOS 6810 System Software PRM, M11).

The Assembler provides a facility for the programmer to insert directives into his program. These
directives, although they are not program instructions, allow the programmer to guide the assembly
pracess,

These directives can be inserted in the source program the first time it is assembled or input via

the Line Editor. The directives are fully defined in volume 1 of this manual and a list is shown
below,

211
January 1978.

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

Directive

DATA
EJECT
END
ENTRY
EQU
EXTRN
FORM
GEN
IDENT
IFF
IFT
LIST
NLIST
RES
XFORM
XIF

Meaning

Data generation

Continue fisting on new page
End of Assembly

Define entry point name
Equate symbol to value or another symbol
Define external reference
Format definition

Generation directive

Program identification

If false

If true

Resume listing output
Suspend listing output

Reserve memory area
Extension of FORM directive
End of condition

2.1.2
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL-PART 3

o o~

a2 In-at
224, F. . aration of the Source Module

Source modules can be input via any input device,
The statements can be prepared on these media in either of two formats :

1. They can be prepared in the same format as the program coding sheet with tabulation
points set at the 1st, 10th, 19th and 41st column.

. They can be prepared with a space or backslash (\) between each field.

Whatever media the module is being prepared on, the relevant fabeliing and structure standards
apply i{ser DOS 6810 System Software PRM, M11). The Assembler always lists instructions
in coding sheet format.

2.2.2. Source Input
The source module must be input to the system by using the command :
RD> 1. [/file-code]

Wt e /file-code is the device from which the source module is to be read.
The last statement input must be :EOQOF, even if the input is from the console typewriter. The
source module is placed in a temporary file {/S) on disk.

22.3. Example Input

The following coding could be input via any input device :

o Data
Syslems

Y PTS6810 ASSEMBLER

e POOREE NPT e
o , ”T‘“‘Ik_” :;_,7.'_._"'_ - Camments _ ']
o S S U S L1 L N W G | L3}
RTHIE.J_L J.L_é L [1_4.44_.._1_%. VRN DV T S, e 1 l_A_L-A_J.__L_L,_A_L..J_L_LA'_L_L_L_J_J_—L__L—u—u—J_A—J_ﬂ
Ll “q EJLLLJ?)J Lt .LHJGJLLTA U S A VMGG S OVHAS A UM W S ST S Gt S T Y VO S B S R S S W
ﬁ‘gw\kJ ;bg.uu 81,0 L sET aNdeEx REAYSTER foR BUFFER
}_H _*4_4_._4.*{-'}!‘- L.k A—Llﬂ_A,.L/_/J_._l_‘..__‘,_.__.__A e e e B ch_._q_ﬂ CC.’.Jﬂ__L_LA“T LAY 93 {

This code could also be input as follows :

DATARLDK A4 4

VABLIZIWHALT

DEVUNAVLDKY AT, 0VSETLY INDEX-REGISTERL.IFORLIBUFFER
AVLOKANAS/FRAVLOGHCALL I CONSTANT L INL A3

Tha listing device gives the listing in the same layout as the coding sheet. An example output
iisting is shown in paragraph 2.3.1.

Note : The [DENT statement cannot be input using the backslash between fields. [t must be
input with the correct spacing.

221
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL-PART 3

2.2.4. Assembly
The Assembler must be called by using the command :
asmL {15} LNL)

where :

/S indicates that the source program must be read from the /S file
name indicates the name of a library source module or program to be assembiled.

NL if specified, informs the Assembler that no listing is reguired of the assembled program.
If NL is omitted a listing is produced on the printer,
Error messages, however, will always be listed and the lines on which the errors occurred.

The Control Command Interpreter checks the ASM control command parameters for errors. When
there is an error in the parameter, an error message indicating the error is printed, followed by the
printing of S : at the beginning of the next line. The user may now input the correct ASM command.
An example sequence could be :

S: ASM

FILE NAME MISSING
S: ASM /S
or

S : ASM <name>

The source module residing in the temporary file is now read and assembled.

Errors in the source program are detected by the Assembler. it is not possible to correct errors during
processing. In case of a fatal error during processing, e.g. table overflow, core overflow, IDENT missing,
END - missing, the source module is read until an : EOF mark is encountered. At that moment the
following message is printed :

FATAL ERROR HAS OCCURRED NO OBJECT CODE PRODUCED

The object file, on which the output of the Assembler was written, is deleted.
if an {/O error occurs, processing is terminated immediately.

222
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL-PART 32

2.3, Qutput

The standard object output file for the Assembier is the temparary/O file. If this file does
not yet exist an assignment is made for it, When it does exist the object output is written
after the information already existing in this file uniess it has been closed by an EOF record.
In that case a new/O file is created and the old one is deieted.

2.3.1. Assembly Listing

The Assembly listing is output on the listing device if the NL option is omitted. The format
of the printout is shown in the example below.

06000 IDENT FORM MODULE TITLE
00001 INOUT FORM 8=1/07,8,16 =/80AD,16,18 =/2804,16 =1 SET UP LKM WORDS
00002 0600 BUFFER RES 10 RESERVE 10 WORDS BUFFER
00003 0014 0003 DECB DATA 8,BUFFER,20,0,0,0 CONSTRUCT ECB
0016 0000 R
—— ey e —w — s -
=
decimal
line number
hexadecimal
value of location
counter

hexa representation of
the instruction, data, S
or address

T 7L

A = Absolute value

F = Forward reference
R = Relocatable
X = External

s'ourf:e statement } B
line image ¢
comments e

Wh=r 4« non-fatal error has occurred during assembly the processing continues but the place
where the error occurred is indicated by an error code (see Section 2.3.3) following the line

in which the error occurred. An asterisk is printed underneath the place where the error was
detected.

An error counter is updated every time an error occurs. The number of errors is given after
the printing of the symbol table, by :

ASS. ERR. 5 decimal digits (see example in Symbol Table, below).
2.3.2 Symbol Table

Each labet which appeared in the label field of an instruction is given an address relative to the
beginning of the module,
The symbol table consists of a list of labels for each name defined in or referred to within the
module. This table is always printed out even if the user did not ask for a listing,
The symbol table has the following format -
2.3.1
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL-PART 3

label value type

where label

type

M: AGO
ADDMOD
M:AO1T
M:AO03
M:BO1
M:BO1A
M:B04
ENDSVR

is the name that appeared in the label field of an instruction,

value is either the address of the label relative to the beginning of the module or
an absolute value {see type below},

is the type of label. It can be one of four single digitcodes : A, F, R, or X,

A = an absolute value. The label has been assigned a value with an EQUate

directive,

F = aforward reference. The label is defined later in the module,

R = arelocatable reference,

X = an externally defined label {(EXTRN)

The symbel! table is printed with three labels across the width of the paper. The total number

of errors encountered during Assembly is printed at the end of the symbol table. An example
is shown below,

0000 R M:BCO 005C R MPYMQOD X

X DSUMOD X SYSAB X
0006 R T:S0PC 0136 R M:AD2 0018 R
0010 R T:SVR 0152 R M:AD4 0020 R
008C R M:BOOA 0074 R M:BOOB 0082 R
00A2 R M:BO2 00AA R M:BO3 DOCA R
00DC R M:BO4A OQ0EA R M:BQ7 0100 R
024E R

ASS. ERR. 00000

2.3.3. Error Messages

The following error messages can be output by the Assembler :

CODE MEANING DESCRIPTION
*C illegal constant — "Constant’’ overflow
— A constant with hexadecimal value must begin with either /
or X. In the latter case, the value must be enclosed by
quote marks, e.g. X ‘ZF’,
— A constant should not have been written here.
_________ __.|.= Hexadecimal constant written either X" or /. = _
*E Not an even — The specified start address is not even,
) address | — Thespecified AORG or RORG operand is not even.
*F Hlegal FORM — An XFORM declared symbal must be linked to a FORM
or XFORM defined pseudo whose name is the first pararmeter of the
directive operand.

— More than 16 fields specified.
— Negative field length,

— The length of this field cannot be contained in 16 bits, {tis
too long.

232
January 1878

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

CODE

MEANING

DESCRIPTION

— A displacement value is not allowed when the predefinition
concerns an external reference name,

— The : predefinition is only allowed for a 16 bit field,

— Invalid predefined vakie of a field (overdisplacement or nega-
tive value for a less than 18-bit field),

— The division of the current word of an XFORM declaration
is not the same as the corresponding word of the linked
FORM symbol.

— The predefinition of the fields of the current word of an
XFQORM declaration is not the same as the corresponding
word of the linked FORM symbol.

— More then 8 words described by a FORM declaration.

— More than the number of words described by the linked
FORM symbol described by an XFORM declaration.

— The fieid number specified in the syntax definition line is in-
valid.

— The same field specified twice in the syntax definition fine,

lllegal identifier

The first character of a symbol must be a letter.

*L

lllegal label

— The label has been defined previously as :

— asymbol name
— an external reference name

- an entry point name

— A label has been given where it was not aliowed.
— A label must be specified.

*M

Unknown
mnemeoenic

— Unknown mnemonic
— Unknown condition mnemaonic

*0

Overdisplacement

— Displacement value of parameter too large.

*p

egal parameter

— Too many parameters specified in the operand of an instruc-
tion, in the pseudo-instruction or directive.

— Not enough parameters specified in the operand of an
instruction, defined pseudo-instruction or directive,

— A parameter in the STAB directive must not be an entry point
name, a COMMON name or a forward reference,

— The operand in a DATA directive must not give more than 16
code words.

re

- " is not a character string
~ lliegal use of a register name in a standard instruction operand.

233
January 1978

P TS 6800 ASSEMBLER PROGRAMMER'S REFERLNCE MANUAL-PART 3

CODE

MEANING

DESCRIPTION

*R

Illegai relocation

— Either a predefined expression or predefined relocatable
section has been input,

— Too many relocatable symbols are added to or subtracted
from each other.

— The expression is equal to the result of a subtraction of a
relocatable part from an absolute part.

— If an external reference is specified the displacement value
must be absolute.

— The instruction code operation defined by an EQU direc-
tive must be absolute.

*S

Illegal statement

— The ENTRY or EXTRN or COMN directive is no longer
acceptable,

— The directive does not need an operand.

— The directive needs an operand.

— Invalid character.

— Invalid indirect addressing

— Invalid condition specification.

— The labei is not followed by an operation code,
— "{'is not followed by’)’

— The operand value of a RES directive makes the instructizn
counter value negative,

— GEN cannot produce any code as either any error occurred
or the code word has already been produced. .

*X

lllegal expression

— More than two symbols defined
- More than three terms in the expression.

— An external reference and a forward reference have been
specified in the same expression.

~— An external reference is preceded by a minus sign.
— A plus or minus sign is not followed by a term.

— A forward reference or external reference is specified in a
requested predefined expression.

— A register expression must not contain more than one term.

*****UO

Core overflow

— Fatal error. Too many symbols or forward references used,

******E

End missing

— Fatal error. The END statement is missing.

*'ﬁl**il

IDENT missing

— Fatal error. The IDENT statement is missing,

2.3.4
January 1978

PTS 6300 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL-PART 3

234 Saving the Assembled Module

After a suczossful assembly the source module can be saved by using the command :

file-name
KPFLJ /SE, module name/ 1

if (file-name is not given, the module js catalogued with the name given in its IDENT
module nam
statement.

235
Janvary 1978

PTS 6300 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

3.
3.1

TOSS SYSTEM START

General

System start is the initialisation process which prepares a PTS 6000 Terminal Computer
for application pragram running. 1t comprises the following steps -

Load the TGSS Monitor into memory.

l.oad the application program into memory.

L.oad the application program into memaory.

Set up the required Monitor tables {optional Monitor configuration)

Set up the required CREDIT tables {if a CREDIT program is being used (see the
CREDIT Programmer's Reference Manual, M04)}.

Activate the application task. If there is more than one task to be activated, this must
be done by the application itself (only the 1st application task, or DEBUG, is started
by the Monitor}.

3.1.1
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL-~PART 3

3.2, System Start Procedure

The Monitor, Monitor configuration data, and application can be loaced from cassette,
disk, or flexible disk. Loading can be contralled from the full pane’ ¥ present) or from
the SOP only. All the relevant praocedures are described below.

3.2.1. From Cassette

It is possible to load the system from one, or two cassettes depending upon which option
was taken during systerm Generation {see $PCAS, DOS 6810 System Software PRM—M11},
The first option, everything on one cassette, is :

& Monitor
® Application
[® Monitor configuration data)

The second option, two cassettes, is :

Monitor and application on the first cassette
® Monitor configuration data on the second cassette

The generation of the cassettes is described briefly in section 3.3 but a detailed description is
given in DOS 6810 System Software PRM, M11,
The procedure for loading the system is :

1. Ensure that the power is switched on at the Terminat Computer and at each purizhers
device.

2. Insert the Monitor cassette in a cassette drive,
3a, Toload from the full panel, press the following buttons in sequence :

1) Reset (RST)
2) Master Clear {MC)
3) Initial Program Load (IPL)

3b., Toload from the SOP only, press the SOP IPL Switch,

4. Select the cassette drive containing the Monitor cassette by pressing SOP switch 1 {for
the left-hand cassette drive) or SOP switch 2 {for right-hand cassette drive).

5. The Monitor and application program will now be read into memory.

6. If a second cassette containing the Monitor configuration data is to be loaded, mount
this cassette in a cassette drive and press the appropriate SOP switch (1 or 2} when
the first cassette has been read.
The Monitor configuration data will then be read into memory and the required Monitor
tables will be set up.

7. The application will now be executed unless DEBUG has been included. DEBUG has a
higher priority than the application program {because it is part of Monitor} and it wiil
stop as soon as it is loaded, waiting for the operator’s command (see Chapter 4).

During loading, lamps 1,2 or 3 may lightup:

Lamp 1 indicates that an application is being loaded
Lamp 2 indicates an input error
Lamp 3 indicates that the application is too large for the memory

3.2.1
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL-PART 3

322

From disk

The Monitor and application must be on the same disk, either cartridge or fixed disk.
The procedure for loading the system is :

1.

2

3a.

3b.

Ensure that the power is switched on at the Terminal Computer and at each peripheral
device.

insert the disk on a disk drive, press the START button and wait for the READY lamp
1o light up.

If loading is to be done from the fixed disk, a disk cartridge must still be loaded.

To load from the full panel, press the following buttons in sequence :

1) Reset {RST)
2) Master Clear {MC)
3) Initial Program Load {IPL})

To load from the SOP only, press the SOP IPL switch,

Select the disk containing the Monitor by pressing SOP switch 3 (for the cartridge disk)
or SOP switch 4 (for the fixed disk} Monitor will then be loaded.

If there is only one application program on the disk, lamp 1 will light up and the applica-
tion will be loaded automatically.

If there is more than one application program on the disk, all the lamps will fight up. Choose
the application program to be loaded by pressing the appropriate SOP switch.
The application will now be executed unless DEBUG has been included. DEBUG has a

higher priority than the application program (because it is part of Monitor} and it wil) stop
as soon as it is loaded, waiting for the operator’'s command (see Chapter 4).

During loading, lamp 1,2 or 3 may lightup :
Lamp 1 indicates that an application is being loaded
Lamp 2 indicates that the application chosen by the SOP switch does not exist.
Lamp 3 indicates that the application is too large for the memaory,

3.2.3

From Flexible disk

The Monitor and application program must be present on the same flexible disk. The disk is produced
by using $PFLEX during System Generation {see $PFLEX DOS 6810 System Software PRM M11).
The procedure for loading the system is :

1.
2.

3a.

3b.

Ensure that the power is switched on at the Terminal Computer and at each peripheral device,
Put the diskette into a drive and shut the door,
To lead from the full panel, press the following buttons in sequence :
1} Reset {RST)
2} Master Clear (MC}
3) Initial Program Load (IPL)
To load from the SOP onty, press the SOP Pl switch,

Selact the flexible disk drive containing the Monitor and application by pressing SOP Switch 5,
6,7 or 8.

322
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

switch b5 = flexible disk 1, multiplex channel

switch 6 = flexible disk 2, multiplex channel
switch 7 = flexible disk 1, programmed channel
switch 8 = flexible disk 2, programmed channel

Monitor will then be loaded.

5, If there is only one application on the disk, lamp 1 will hight up and the application will be
loaded automaticaliy,

8. If there is more than ane application on the disk, all the Yamps will light up. Choose the
application pragram to be loaded by pressing the appropriate SOP switch,

7. The application will now be executed uniess DEBUG has been inciuded. DEBUG has a higher
priority than the application program {because it is part of Monitor) and it will stop as soon
as it is loaded, waiting for the operator’s command (see Chapter 4},

During loading, lamp 1, 2 or 3 may lightup :

Lamp 1 indicates that an appiication is being loaded.
Lamp 2 indicates that the application chasen by the SOP switch does not exist.
Lamp 3 indicates that the application is too large for the memory.

3.2.3
January 1978

PTS 6300 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—FPART 3

3.3. Deferred binding of Monitor Configuration Data

3.3.1. General

The TOSS for a particular PTS 6000 Terminal System must be generated by the utility SYSGEN.
This utility generates the TOSS Monitor on disk. The Monitor can be copied to cassette or flexible
disk for the system start procedure. This copying is done by the catalogued procedure $PCAS (for
cassette) or SPFLEX (for flexible disk}.

If the programmer wants to test his program with Monitor configuration data supplied at run time
{(deferred binding} he can exclude the Monitor configuration data from the Monftor cassette at system
generation time, The Monitor wi!l be generated without configuration data but with the Monitor
Configuration Program (MONCON]} which will read the configuration data at run time. In this case
the Monitor and application program must be on the same cassette. The instructions to generate a
Monitor configuration data cassette are given below in paragraph 3.

MONCON will read the Monitor configuration data from the cassette and generate Monitor tables
at the end of memory {higher addresses}. .
Only the drivers and tables which are included at system generation time may be configured by
MONCON.,

The use of the Linkage Editor, $PCAS, and $SPFLEX is described in the DOS 6810 System Software
PRM M11),

3.3.2. Monitor Configuration Cassette

When the Monitor and application load module have been read into memory, control is passed to
MONCON,

This program will read the Monitor configuration data and generate the necessary Monitor tables
related to the hardware configuration.

To enable MONCON to set up the correct Monitor tables, the following data must be supplied as
Monitor configuration data on the cassette :

® Terminal class identifier

® Number of work positions in the terminal class
® Priority level of the task

® Terminal device class

e Connection on the local/remote channet unit
® Special device classes

3.3.2.1. Generating the Monitor Configuration Cassette

The cassette containing Monitor configuration data is generated at the console typewriter with the
aid of DOS 6810 control commands.
The procedure for generating a Monitor configuration data cassette is as follows.

3.3.1
January 1978

PTS 6800 ASSEMBLER PROGRAMMER’S REFERENCE MANUAL—FPART 3

First insert a cassette in one of the cassette drives, then key in the following sequence.

(i) ASGI_J/E1, TY10

{ii) REWL /03

{iii) RDAL I/0A

{iv) Monitor configuration data
{v) WEFL /03

{vi) PCH L /0A

(viij WEFLJ/03

{vili) REWLJ 3

(ix} ULDLJ3
Explanation *
(i) Assign file code/E1 {source input) to the console typewriter,

(i) Rewind the left-hand cassette drive.

{iii} Read data from the source input file (typewriter} and transfer to temporary disk file /A.
{iv) The format of the Monitor configuration data is described below.

(v) Write an end of file mark on the cassette,

{vi) Write the contents of temporary disk file /A to the cassette, an end of file mark is written
automatically.

{vii} Write one end of file mark on the cassette.
{(viii) Rewind the cassette,
{ix) Unload the cassette,

3.3.2.2. Format of Monitor Configuration Data
The Monitor configuration data must be keyed-in in the following sequence :
® Terminal class identifier {2 characters) followed by the number of work positions in the terminal
class,
Priority level
Terminal device class followed by the connection on the local/remote channel unit,
Special device class.
EN End of task definition

[+

. The terminal class identifier and number of work positions have the following format :

terminai class identifier : decimal-integer CR LF

< terminal class identifier > is specified in the main module of the application program.
< decimal—integer> is the number of work positions in this terminal class.

b. Priority level has the following format :

decimal—integer CR LF

332
January 18978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

< de.imal—integer > consists of two digits specifying the priority level of the task, which
is normally 60.

A number lower than B0, means that the task has higher priority than the one with level 60.

¢. Terminal device class and connection have the following format :
T decimal-digit, decimal-digit L CR LF
{local channel unit)
T decimal-digit, decimal-digit R CR LF
(remote channel unit)
< T decimal-digit >, Is the terminal device class which is specified during system generation,

< decimal-digit L > or < decimal-digit R> is the number of the connector on the local or
remote channe! unit, respectively to which the
work position is connected.

ci, Special device class has the following format :

S decimal-digit CR LF
<8 decimal-digit> is the special device class which is specified during system generation.

e, EN CR LF terminates the parameters for the terminal class concerned and the same

parameters as mentioned above may be specified now for another terminal ciass.

When closing with ENEN, the data that follows will be considered as commaon device information.
An example of Monitor configuration data is shown helow for a configuration which consists of

3 work positions configured in the same way and one special work position with a different confi-
guration.

Common devices are used by both terminal classes.

The first terminal class is T0 and the second is FO.

Monitor configuration data :

TO : 3 (Three tasks with identifiers TO, T1 and T2 will be generated)
60

T1, 1L [Terminal device class 1 on channel unit line 1, 2, 3)
T2, 1L {Terminal device class 2 on channel unit line 1, 2, 3)
81 {Special device class)

EN

FO

T3, 8L

EN

EN

S3 Common devices

54

EN

3.3.3
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

3.3.2.3. Errors During Configuration
During Monitor configuration any errors will be indicated on the Systern Operator's Panel :

Lamp 1t — Monitor configuration data reading
Lamp 2 — Cassette input error

Lamp 3 — Formaterror

Lamp 4 — Memory overflow

3.34
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL-PART 3

4, ASSEMBLER DEBUGGING PROGRAM

During the uroduction of a program, the programmer requires a method investigating errors
that may have occurred. The Assembly Debugging Program (DEBUG) is provided to assist
the programmer in monitoring and controlling the execution of this program in order to find
errors.

This chapter contains :

a description of the Assembly Debugging Program
definitions of the control parameters

instructions for running the program
interpretations of the result.

!

4.1. Introduction

The Assembly Debugging Program {DEBUG) is an interactive diagnostic task which runs under
the control of the TOSS Monitor. 1t runs in paraliel with the Assembly application program
being tested.

CEBUG may be used to control the execution of the application program in the following ways :

® the contents of registers or memory may he examined or modified;

® the application program may be stopped by inserting breakpoints at selected places, and started
again;

® parts of the program may be conditianally executed, once or a number of times {looping);

® calculations on addresses may be performed. '

DEBUG operates in either one of two modes :
® Debug mode — the programmer has control over the execution of the user program;
¢ User mode — the user program is executed normally,
Readers of Chapter 4 should be familiar with the following DOS 6810 System Software concepts :

® linkage editor

¢ control command

® user library

® TOSS system generation

These concepts are explained in the DOS 6810 System Software PRM (M11}.
Before using DEBUG, the specialist reader should read Appendix A, Memaory Organization.

4.1.1.
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL-PART 3

4,2. Using DEBUG

DEBUG is specified at SYSGEN time and is part of the TOSS Monitor,
If DEBUG is not required (e.g. for production versions of the application program) it must
be excluded at SYSGEN time.

DEBUG runs on any level greater than or equal to 8 and always on a higher level than the
application program being tested. The default vaiue is 50 (/32). All Monitor tasks, except data
management can use DEBUG. Control is handed to DEBUG immediately after the TOSS Monitor
and application program are loaded into memory (system start).

The User communicates with DEBUG via the system operator’s console {CTW) using the commands
described in Section 4.

DEBUG maintains two sets of registers-relocation registers for addressing purposes and “pseudo

registers’’ for processing purposes.
The use of relocation registers is described in Section 4.3.3.

The pseudo registers correspond to CPU registers P, A1 to A15 (inclusive).
These are loaded when DEBUG is entered from either a halt command or a trap.

The user may then examine and modify these contents, and before the user program is restarted,
the pseudo registers are copied into the real CPU registers. From the user’s point of view these are
indistinguishable from the real registers.

4.2.1. Breakpoints

The user can stop his program at a specific point by a command to DEBUG. The point at which
the program stops is called a ‘breakpoint’.

DEBUG replaces the instruction at the breakpoint with an illegal code, causing a call to the trap
call interpreter (/6000), When the program reaches the call, control is given to DEBUG, The user
may then examine and modify registers and memory before continuing.

DEBUG alsc provides the possibility to loop through a breakpoint a specified number of times and
to execute breakpoints conditionally depending on register or memory values, This can be useful
when debugging program, loops etc.

It is possible to maintain up to sixteen breakpoints simultaneously.
However, only one may be looped or executed conditionally at a time.
This is called the ‘active breakpoint’. The last breakpoint given or looped on is active,

When looping, DEBUG uses an internal register called the loop counter.

4.2.2. DEBUG Start

During execution, DEBUG is entered after a breakpoint, illegal instruction, or if the user issues a
halt command from the console.

When DEBUG is started, relocation register E contains the first address of the application program.

DEBUG can be restarted from address /92.

4.2.1
January 1978

P TS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

4.3. DEBUG Input
4.3.1. General

DEBUG provides the programmer with a variety of commands to control the testing process.
The commands are briefly ;

Command Mnemonic

calculate

open memory word
go

halt

I o ™~

interrupt

loop

print memory location
proceed from breakpoint

print location registers

open program status word
set breakpoint

L
M
P
Q
print CPU registers R
S
T
verification vV

Y

remove breakpoint

These commands are described in full below :

4.3.2 DEBUG Modes

DEBUG operates in one of two modes known as B {debugging} mode, and U {user) mode. In B

mode DEBUG s running and waiting for an operator’s command. B mode is selected whenever
the application program stops. The mode is selected by the system

A stop occurs when :

— a halt (H) command s keved in

= a breakpoint is Encountered in the application program
— a verification halt condition is encountered

— an illegal operation code is detected,

U mode is selected when one of the following commands s keyed in :

— proceed from breakpoint (P)
— loop through breakpoint {L)
— Go (G)

Commands other than H, P, L and G will not result in 3 change of mode .
The current mode js indicated by the letter B or U printed at the left of each tine of output,
Immediately after System start DEBUG isin 8 mode,

437
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL-PART 3

4.3.3. Relocation Registers

DEBUG maintains 16 relocation registers. ¥ hese registers are numbered 0 to F and may be
used in commands as indexes when refering *o inemaory tocations. The contents of relocation
registers may be examined and modified uging 2 7 command,

The following description jliustrates the way 1. «. ot the relocation registers are normaily used,

The start address of the module currentiy beiny rested is loaded into a refocation register, Commands
then refer to locations within this module by guoting the address refative to the start of the module
{listed by the assembiler as the second fiela from the left} together with the number of the reloca-

tion register.
Relocation registers may alsc be used 10 save constants.

When starting an application program, relocation register £ contains the LOAD address of the program
— 8. Register F contains — 8 which can be used to obtain module start addresses from the Linkage

Editor Map.

4.3.4. Addressing
The following commands contain references to memory addresses :
GILMPQRSTY =,/.

Relative, absolute or indirect addresses may be used in thess commands,
All address values are given as hexadecimal numbers.

The relative address is caiculated as a displacement from 2 rgmed reiocation register, The ardress in
the relocation register could be the start address of the mod.iie or some other reference address (the
start of an array for example). The relative address from the start of the module is shown in the second
field from the left on the Assembler listing. The relocation register may also contain an absolute
address.

The absolute address is that which is given in the program counter and is the displacement from word
zero of memory. If the address refers 1o the start of an array, a displacement value must be given to
specify the word within the array {counting the first word as 1),

Indirect addresses are used to reference :

® CPU registers ()
control registers (1)
® relocation registers (Q)
® memory words { =, 1|, V)

If an address is indirect it must be prefixed by an asterisk (e.d. * 10). In this case the indirect address
will point to a memory word that contains e 2bsofute address to be referenced. |f the resulting
address is odd, the next lower even address will be used,

4.3.5. Command Syntax

Commands are keyed in immediately after the B or U prompt which is printed at the left of each
line by DEBUG.

Commands have the following Syntax :

4.3.2
January 1978

PTS 6800 ASSEMBLER PROGRAMMER’'S REFERENCE MANUAL—PART 3

B
{ } [parameter 1][; parameter 2] command
U

"B"” or "U” is printed by the systern at the beginning of the line. “Command” is one of the
single character commands listed above in section 4.3.1.

TERM

parameter .= [
parameter { * } parameter

hexadecimal integer

* term
TEBM: :={term R
term Q
® term
where : — “hexadecimal integer’” is a four digit hexadecimal number
“* term’” is an address of a memory word that contains the address of the required
information,

“term R’ is the sum of "term’’ and the contents of CPU register R.
"term Q" is the sum of ""term’ and the contents of rejocation register Q.

"® term” s a register that contains the address of the required information,
An open and modify command has the following syntax :
{3 } /nnnn [parameter } C

where “'/nnnn’ is the content that “parameter’” optionally replaces,
"C" is a terminating character which can be :

CR modify and close
LF modify and open the variable at the next higher address

@ modify the variable and use the new value as the address of the next variable
to be opened {i.e. indirect addressing)
This next variable is automatically opened.

Any other character will result in the current variable being cfosed without modification and without
the next variable being opened.
The description of each command will specify which terminating characters can be used.

Notes: Anempty or non-existent parameter may have a special meaning to the command, see the
description of each command.

Parameters are left-shifted so that only the last four character keyed in are taken as significant,
the others are ignored, {f an undefined command is keyed in, a question mark is printed and no
further action is taken. If an illegal command is keyed in, it is rejected and 'NO’ is typed out;
no further action is taken,

4.3.3
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

4.3.6. Calculate Command { =)

Format ! parameter =

Description : ‘“’Parameter’’ is calculated and displayed. This command is useful for calculating
hexadecimal addresses. "Parameter” can consist of a string of terms because the
calculation is performed as each term is input.

The resuit is printed after the = has been keyed in.

Examples : U 262A+2A4 = 28CE
I 23+45+45 = 00AD
m

paramneter result
de command
4.3.7. Open Memory Word Command (/)
Format 1 : parameter /
Description : Address “parameter’” is opened for modification.
Format 2 : /

Description : The last used address is re-opened,

Example I% 1Q/262A
mode l result
chommand

arameter

4.3.8 Go Command (G)

Format 1 : parameter G

Description : Start user program at "'parameter’’.

Format 2 : G

Description : Start user program at the address in the program counter.

Exampie : B 0,1
r

r}wode ? iommand
p

ameter

4.3.9. Halt Command (H)
Format : H

Description : The application program is stopped.

4.3.10. Open Interrupt Control Register (1}
Format : parameter |

Description : Open interrupt control register specified by “’parameter”.
The registers are defined in the table below :

4.3.4
January 1878

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL-PART 3

Code register

0 Priority level of DEBUG is displayed
1 DEBUG interrupt mode is displayed

0 = inhibit mode {INM)
non-zero = enable mode (ENB)
2 DEBUG interrupt control, 0 = None
3 Real time clock controf, O = Off

Examples 0|/ 0032

mode result
command

parameter

B 11/0000

result
mode
command

parameter

U 21/0001
result
mode command

parameter

] \/FFFF
| resuit

mode
ommand
parameter

4.3.17. loopf(l)
Format 1 parameter L

Description Loops ""parameter” times through the current breakpoint .
The program will run without stopping at that breakpoint until it comes
to it (parameter + 1) times,

Format 2 L
Pescription Loops only once through the current breakpoint,
Example : t t
mode command
parameter
4.35

January 1878

008é
0096
00Ab6

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

4.3.12. Print Memory Location Command (M)

S T L 0N

LN S 2 R Y

Format 1 parameter 1; parameter 2 M
Description : Prints all memory locations from “parameter 1" to "parameter 2"
{inclusive),
Format 2 parameter M
Description : Prints eight words from '"parameter”.
Format 3 M
Description : Prints eight words from the last address specified.
Examples B 86.A6 f\!’l
command The result is shown below
mode parameter 2
parameter 1

000 D236 23DC FFFE [pOnNg 3710 5714 1CAC

2276 (Q4iF7 0000 OQOFY 0000 0000 2120 02446

5710 85A0 0070 &&A0 FFFE 94C0 0094 812D
4,.3.13. Proceed from Breakpoint (P}
Format 1 parameter 1; parameter 2 P
Description : Removes the current breakpoint, sets a new breakpoint “parameter 17,

proceeds, and loops ‘parameter 2" times through the new breakpoint.

Format 2 parameter P
Description : Sets a new breakpoint “'parameter’’ and proceeds from there.
Format 3 P
Description : Removes current breakpoint and proceeds,
Examples

A4, 1; E
ommand

mude parameter 2
parameter 1
U C4,1 E
mL de | ommand
parameter
4.3.6

January 1978

.F

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

4.3.14. Print Relocation Registers (Q)

Format 1
Description :
Format 2

Description :

Examples

nono
0000

parameter O
Opens and prints the content of relocation register Q,
Q

Prints all relocation registers

1Q/ 262A
result
mode ommand
parameter
(E1 The result is shown below.
mode command

ppoo 0DOo0 oopo opoO oDDO O0ODO0 DDOD
oooh Co0o 0334 DCODO DOOD 1CAs FFFS

4.3.15 Print CPU Registers (R)

Format

Description :

Format 2

Description :

Examples

0238
s002

parameter R
Opens and prints the content of the CPU register “parameter”’
OR = program counter,

R

Prints all CPU registers.

R/25A3
X result
mode ommand
parameter
Y] R
ch)de co.Jr\mand The result is shown below :

1DEA 8F20 873F &5BF 0238 3340 8135F
0At0 1E80 &13F 0100 0216 878D D236

4.3.7
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—-PART 3

4.3.16. Open Prograrn Status Word (S)

Format : S

Description : Opens and prints the program status word (PSW). For a description of
the PSW see Appendix A.

Examples S/E1C0
result
mode command
4.3.17. Set Breakpoint (T}
Format 1 parameter 1; parameter 2T
Description : Sets a breakpoint {i.e. a subroutine call) at the address specified by
"parameter 1" and the loop counter to a value “'parameter 2.
Format 2 parameter T
Description : Sets a breakpoint at address specified by “parameter” and the loop counter
to zerg,
Examples : A4.1; 'L
ommand
mode parameter 2

parameter 1

Ad1 I
mbde ommand

parameter

4318 Verification (V)

Format 1 parameter 1;parameter 2V

Description : Stops at the next breakpoint encountered when the condition specified by
xx is true, where xx can be :
RE {register parameter 1) is equal to parameter 2.
RN {register parameter T} is not equal to parameter 2,
ME {address parameter 1} is equal to parameter 2.
MN {address parameter 1) is not equal to parameter 2.

Before the comparison is made, parameter 1 is masked with the verification mask register. |f
register O is specified the Program Status Word is used.

For the contents and use of memory, see Appendix A, Memory Organization.

4,38
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

Format 1 Qv
Description : QOpen verification mask register
Format 2 \%
Description : Turn off verification
Example : 2674 ; E921 YME
condition
mode command

parameter 2
parameter 1

4.3.19. Remove Breakpoint (Y)

Format 1 parameter Y

Description : Removes the breakpoint at address "'parameter”’
Format 2 Y

Description Removes all breakpoints

4.3.9
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL-PART 3

4.4, Running DEBUG

4.4.1. DEBUG Output

Each time DEBUG is entered, the following message is printed :
C - PC = LC, REL — PS5W

where

C is used to indicate the way DEBUG was entered.
It may have the following values :

C Meaning
S start or restart
T breakpoint

| illegal instruction

H halt command

PC program counter is the absolute address where the program was
interrupted

LC, REL s the relative address LC is indexed by the relocation register REL,
The REL with the nearest corresponding LC wvalue is chosen.

PSW CPU program status word at interrupt, see Appendix A

Output from the commands is shown in the paragraph describing each command in Section 4.3,

4.4.2, Loading Segments for Debugging

It is not possible to set a trap in a segment until it has been loaded. This means that it is
necessary 1o set the trap in the load task just after the segment has been loaded, then find out
in what partition the segment is placed and set a trap in the appropriate position. At the end
of the load task an exit is made {(LKM, DATA3). The LKM Iis a useable breakpoint.

{1 is aiso possible to use the verify function (see Section 4.3.18) after setting a call in the load
task. The segment pointer {address in the LSET to the segment) is found in the register A3 at
exit of the load task.

443, Interrupt Contro/

When DEBUG is entered from a breakpaint, it is set to run at level 50 { = /32}, in the mode ENB.
Ifin INH mode, it is set to the same as the interrupted user program.

This is, in most cases, just what the user wants. [NH sequences will not be interrupted, Monitor
tasks will interrupt DEBUG etc.

However, there might be reasons to have DEBUG working in another way. For example:, when debugging
synchronous devices, interrupt routines in ENB mode, time out functions, etc.

Therefare DEBUG has the following features :

for commands see Section 4.3.

44,7
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

1. The tevel may be changed. Since the console uses level 7, the level should
not be set to less than 8.

2. The interrupt mode may be changed to either ENB or INH,

3. The function that DEBUG changes mode at breakpoints to the user mode
may be excluded.

4. The real time clock may be handled by DEBUG,

4.4.3.1. Interrupt Button

Pressing the interrupt button (INT) on the full panel forces DEBUG immediately to command
mode. This may be used to stop a long memory dump or to get the console on-line after pressing
master clear (MC)—

The INT button is only available on computers with a full panel.

4.4.3.2. Power Fail
The power on/off interrupt is just switched through DEBUG after having set the console
on-line.
4.4.3.3. Real Time Clock
The real time clock may be operated in two modes :
1. The RTC interrupt is switched through DEBUG;
2. DEBUG handles the RTC interrupt

Mode 1 is default.

4.4.2
January 1978

PTS 6800 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

APPEND'X A : MEMORY ORGANIZATION

The information in this Appendix will not normally be required by most Assemble Programmer’s
but has been included for specialist programmers.

A Memory Layout

AREA ADDRESS

Hardware Interrupt Locations /0

/7C
Pointer to Subroutine Call Interpreter /7E
System Halts /80

/84
Communication Vector Tabie /86

/98
Stack Qverflow Area /9A

/100
Stack variable
Monitor variable
User Program Area variable

end of memory

|

Figure A1 Memory Layout

— bLocations /0 to /7C are hardware interrupt locations. They are hard-wired to internal and
external lines. Each location contains the address of the interrupt routine required to service
the interrupt connected to that location. The interrupt connected to location /Q has the
highest priority (level O},

— Location /7E contains the address of the subroutine call interpreter which handles simulation
of certain instructions not included in the hardware.

— Locations /80 to /84 contain the system haits.

— Locations /86—/98 are the Communication Vector Table. This is a System table,
This table has the following layout :

ALt
January 1978

PTS 6500 ASSEMBLER PROGRAMMER'S REFERENCE MANUAL—PART 3

AREA CONTENTS
86 CvT Memory size
CVT without CVT STB A15 stack base
x::‘;znem CVT SBA Start of buffer area
CvT EBA End of buffer area
CVT INP interpreter table address
90 RF INIT Jump to restart module
92 RF BUGG Jump to Debugger
CVT APA Application address
CVvT APS Application Start address
o8 CVT CLK Real time clock
CVT LSB Address to LSBT
Memory CVvT DK File code start up disk
Management FREPAR Free partition pointer
PARLEN Length of partitions (in bytes)
Figure A2 Communication Vector Table
Notes 1, If Memory Management is used, the CVT extends into the stack overflow

2. CVT SBA holds the address after the root,
3. CVT APA is the address of the beginning of the root,

— The area occupied by the stack is defined at system generation time. When an interrupt
occurs, P-register, PSW and a number of registers are stored here. The number of registers
stored depends on whether the interrupt routine servicing the interrupt runs in inhibit mode
{anywhere from O to 15 registers) or in enable mode and branches to the dispatcher (always

8 registers),

The A15 register always points to the next free focation in the stack {where all information is
stored towards the lower memory address).
When A15 reaches the value /100 or becomes lower a stack overflow interrupt is given.

— The area after the Monitor area is the user area.

A.12
January 1878

PTS 6800 ASSEMBLER PROGRAMMER’'S REFERENCE MANUAL—PART 3

A.2. In“e-rupt System

When working in interrupt mode each interrupt program may be connected to an interrupt level.
As the actioning of an interrupt involves the direct accessing of the interrupt level’s start address
from its hardware interrupt location, the contents of this location must have been previously
toaded with the correct address.

The start addresses loaded in these locations are not fixed and must be defined by the programmer
at SYSGEN time.

interrupt level hardware interrupt location
0 to 63 /0000 to /Q07C

where level O has the highest priority and 63 the lowest, The levels are defined at SYSGEN time.
PROGRAM STATUS WORD

The program status word (PSW) contains data relating to the status of that program. It is maintained
by the System Software.

These fields can be { 0— 5 npriority level
modified by the user 6 — 7 condition register
8 runindicator
9 interrupt enabled indicator
10 control panel interrupt
These fields cannot be 11 power failure
modified by the user 12 reai-time clock (RTC)

except during Debugging 14
15 } not used

A2l
January 1978

