PROGRAMMED CHANNEL

9.1 GENERAL

The programmed channel is the basic PTS 1/0 facility and is a standard
part of all systems. 1ts function is to control the flow of data
between peripheral channel units and the CPU.

It is also used as the initialization path between CPU and 1/0

processors, if present in the system. In all uses of the programmed
channel, the CPU is the controlling unit.

9.2 1/0 INSTRUCTIONS \

Data is transferred via the G.P. bus under the control of a program
written using the following instructions, which may only be issued in
system mode.

* CI0 Control Lnput/Ontput. Start or Stop an 1/0 cperation.

* INR Input to Register. Transfer ouc word or character from a
Channel Unit buffer to a CPU register.

* QTR Output from Register. Transfer one word or character from a
CPU Register to a Channel Unit buffer.

* 55T Send Status. A Channel Unit status word is set in a CPU
register.
R
* TST Test Status. Test whether a Channel Unit is busy. ”___k_,\.
The transfer of each word or character requires a separate instruction
and so progran loops are used T rransfer hlocks of data. The

programmed chanrel has two modes of operation, namely Inhibit (or Wait)
Mode, and Interrupt Mode.

Mi4 TOS8S Reference 9/1 November 1980

PROCRAMMED CHANNEL

9.3 CHANNEL UNIT STATES

Once a Chapnel Unit has been activated by the programmed channel, it is
capable of transferring data to or from a peripheral. Procegsing may
continue while I/0 is in progress between Channel Unit and device.

The following description is applicable to a CHLT or CHRT. Details of
the operation of other channel units may be found in the appropriate
System Engineering manual.

As shown in fipure 9.1, a Channel Unit may be in one of four possible
states, as follows:-

* Inactive The unit is idle, and the only instruction it can
accept in this state is CI0. Switching to Execute state will
occur on reception of CI® Start.

* Execute The unit is operable and transfers data from a
peripheral device to a buffer in the Channel Unit, c¢r vice-versa.
Unless an error occurs, or a CI0O Halt is received, ewitching will
occur to Exchange state on completion of Execute for ioput. For
output, thke Channel Unit remalns in Execute state.

* Exchange The unit is operable and generates an interrupt to the
CPU when this state is entered. The interrupt handler responds
with an INR, and data transfer takes place from a Channel Unit
buffer to a CPU register. On completion of Exchange a switch will
occur to bPxecute state, unless C10 Halt is received, or an error
is detected.

* Wait (For Send Status). An intervupt to the CPU is generated on
entry to this state. Wait state is entered from Execute or
Exchange states folleowing a CI0 Halt, or an error condition. The
interrupt handler respounds to the interrupt with an 55T
instruction, and switching then occurs to Inactive state.

.f___ r —[7‘_‘_4
Clear Ciegr Clear
gt -
) cr?. <7210 Hatt
Interrupt ; o Interrupt
) —_
EXECUTE Elart - ’
Ci0 Hall CI0 Halt CIQ Hatt

Figure 9.1. Channel Unit 5tates and State-switching.

Ml4 TOSS Reference 9/2 November 1980

PROGRAMMED CHANNEL

9.4 PROGRAMMED CHANNEL, INHIBIT (OR WAIT) MODE

In Inhibit Mode the instructions necessary to perform the required I/0
are included in the program which needs that I/0. Interrupts are
disabled in this mode-

Figure 9.2 depicts a possible I/0 sequence in Inhibit mode. Events
proceed from left to right in the diagram. Assume that the Channel Unit
is in Inactive state at the start of the sequence, e.g. after power-on.

l. The program issues a CIO Start instruction and then waits.
This causes the Channel Unit to switch inte Execute state and
transfer a word from the relevant Selector Unit to the Channel
Unit buffer. Exchange state is then entered so that the transfer
can be completed. An interrupt is sent to the CPU but is not
acted upon because interrupts are inhibited.

2. The program now issues an INR ipnstruction which, when accepted
by the Channel Unit in Exchange state, causes a word or
character to be transferred from the Channel lUnit buffer to a
Register in the CPU. After execution of the INR, the Channel
Unit switches to LExecute state and transfers another word or
character, if available, from device to Channel Unit buffer. A
switch ic sade back to Exchange state on completion of Execute,
and another interrupt is generated hut nct acted upon.

3. Repeat (.).

4. The program has now peti:cued all the input transfers it
requires and issues a (LU Halt instruction. This switches the
state of the Channel Unit from Exchange to Wait, and again a non-
actioned interrupt is generated. An SST instruction in the
program r.ow switches the Channel Unit back to Inactive state
ready for the next CIO Start instruction.

5. The program has now obtained the data it requires and may
continue processing.

An important point to notice about Inhibit mode is that the CPU is
forced to wait while I/0 operations between Channel Unit and device are
in progress, anc so it is idle for that tine. This can be largely
overcome by exploiting the interrupt system and using the other mode of
the programmed channel, namely Interrupt tlode.

Ml4 TGOSS Reference 9/3 Movemher 1980

PROGRAMMED CHANNEL

EXCHANGE —— = -

s

EXECUTE——— et

w ey

INACT 1V (St . -
A

19
2
¥
¥
u
P
T

Ml =083 80

e

WALT ==

Mal“dﬂ___j___j _H__ -
CPU Program CI0 OTR IN c10 SST
Start Halt

Figure 9.2. Programmed Channel, Inhibit Mode Sequence.

Ml4 TO8S Reference 9/4 November L1980

PROGRAMMED CHANNEL

9.5 PROGRAMMED CHANNEL, INTERRUPT MODE

Unlike Inhibit Mode, the instructiomns required for I/0 in this mode are
not included in the Main program, but are part of a special Interrupt
Routine, invoked by interrupt signals raised by the Channel Unit
hardware. Interrupts must, of course, be enabled.

1. The program issues a CIO Start instruction and continues with
processing. The Channel Unit switches into Execute state and a
word can be transported from a peripheral device to the Chamnel
Unit buffer. After receipt of the word a switch is made to
Exchange state, and this generates an interrupt to the CPU.

2. Control passes from the main program to the intertupt routine,
which issues ap INR instruction. The Channel Unit, in Exchange
state, accepts this and transfers the word or character from the
Channel Unit buffer to a CPU register. The main program resumes
processing after the INR is completed. The Chamnnel Unit switches
to Execute state and transfers another word from device to CU
buffer, whereupou a switch is mad» back to Exchange state, and
another interrupt is generated.

3. Repeat 2.

4. All required ipput has now been performed, and the interrupt
routine issues a CLO Malt instruction. The Channel Unit switches
from Exchange to Wait state and generates another interrupt to
the CPU. The main program is suspended and the imterrupt routine
gains control and issues an SST instruction which switches the
Channel Unit back to Ilnactive state.

5. The main program resames processing until it reguires the data,
which is ready to !. used in memory at this point.

This example assumes that the progiam is able tco continue processing
while the data is being retrivved. If the 1/0 had not been completed
before it was required by the program, it would have been necessary to
include coding so that the prugram would wait for completiom.

It {5 important to note that, urlike Inhibit Mode, the main program is
not held up waiting for the (i.anrnel Unit. As long as there is

processing to be done, it cau ~irry on simultaneously with Chanmel Unit/
device action, except for short interruptions by the interrupt routine
which contains the I/0 instrurtions.

Note that upon CIO Start for vutput, the Channel Unit switches frow
Inactive to Exchange, not Laccute. This is because, for output, the
first part of the transfer path is from CPU to Channel Unit buffer,
whereas for input, it is from device to Channel Unit buffer.

M1l4 TOSS Reference 9/5 November 1980

