SYSTEM LOADING PROCEDURE (SYSLOD)

24.1 INTRODUCTION

SYSLOD is a system software module which is linked to the TO0SS Monitor.
It takes care of application loading and monitor and application
configuration on the whole range of PTS systems; PTS6B05 and PTS6810
with or without overlay, and PTS6820 with MMU and/or overlay.

SYSLOD performs five functions:-

Loading the application lcoad module.
Reading the configuration file.
Monitor configuration.

Application configuration.

Starting the System.

E I

24.2 I/0 REQUIREMENTS

SYSLOD has its own I/0 routines and is independent of drivers contained
in the Monitor. Loading can be done from fixed, cartridge or flexible
disk, or from cassette. Monitor, application load module, and
configuration file must all be loaded from the same input medium type,
but need not be on the same volume.

24.3 LOADING PROCEDURE

The System loading program consists of three modules. When the Monitor
has been loaded by the initial program loader, contrel is passed to
SYSLOD. SYSLOD loads the application and reads the configuration file,
SYSLDM then performs monitor cunfiguration and SYSLDA performs
application configuration. SYSLDA will queue all the tasks in the
dispatcher queue. After that, all the drivers are initlalized and
control is passed to the DEBUGGER or the Interpreter.

24.4 APPLICATION LOADING

First the application load module as created by the Linkage Editor
(LKE) is loaded into core. If loading is from disk and the program is
segmented, only segment zerv and the other core resident segments are
loaded. If loading is from a sequential access medium or if the program
is not segmented the entire application is loaded.

The application, segment 0, and the memory-resident segments are placed
as high as possible in memory.

Ml4 TOSS Reference 24/1 November 1980

SYSTEM LOADING PROCEDURE (SYSLOD)

24.4.1 Memory Laycut after Application Loading

| " MONITOR

|

- |
SYSLOD |
SYSLDA [
SYSLDM [

|

!

DWT prototypes generated by SYSGEN

Free area

5:GTAB

|
|
i
|
I
|
i
|
!
DDIV prototype |
|
|
|
;
|
|
|
|

P:MTAR [
- - - |
P:PIL [
- - | Segment 00
ASSEMBLER subroutines | |
- - |
INTERPRETER |
[|
| P:s001 I Segment 1 _
[-- ! |
| P:8002 | Segment 2 |
— e — |
- - | core resident
~ -~ | segments
| | !
| -- ol |
| P:S0nn | Segment n _ |

Ml4 TO0SS Reference 2412 November 1980

SYSTEM LOADIRG PROCEDURE (SYSLOD)

24.5 READING THE CONFIGURATION FILE

Now the configuration file is read into memory and, in a 64Kb machine,
placed immediately before the application. With a 256Kb memory, it is
placed at address X'FFFE" and lower.

The part of the SYSLOD program which is still needed, and the DWT
prototypes, are then placed immediately before the configuration data
to make room for monitor tables and buffers.

24.5.1 Regulting Memory Lavout

MONITOR

area for MONITOR
tables and buffers

SYSLDM

DWT prototypes

Configuration data

| I
i |
| [
! |
! |
I I
I I
I |
| SYSLDA |
! |
I I
| I
{ |
I |
| |
I I
! I

----- mmemem—| 64Kb
N — |
| S:GTAB !
[— S
| DDIV prototype |
S A — B
| P:MTAB I
| mm e |
| P:PIL P
[—=~ e | { Segment 00
| ASSEMBLER subroutines | |
i-—-- e |
| INTERPRETER 1
S —— |
| P:SOC1 | Segment 1 _
[N |
| P:sS002 | Segment 2 |
|- RE—— |
- - | memory~resident
~ - } segments
I I |
— R |
| __P:50nn o _ Segment n _|
256Kb

Ml4 TOSS Reference 24/3 November 1980

SYSTEM LOADING PROCEDURE (SYSLOD)

24.6 MONITOR CONFIGURATION

SYSLDM now performs Monitor configuration. Input data for Monitor
configuration is the configuration file, the DWT prototypzs generated
by SYSGEN, and the data arravs SCLASS and TCLASS with information on
the special device classes and terminal device classes as specified
during the SYSGEN dislogue.

The tables MONTAB and SYSTAB hold the addresses of the run-time tables
{(configuration tables)-.

24.6.1 Building Monitor Tables

The following Monitor tables are built:-

* Task Countrol Table, TCTAB, with poluters to all the TTABs.

* Taak Tables, TTAB, with specific information for every task.

* Device Work Tables, DWT, for the terminal devices, special
devices and common devices.

* Interrupt Tables for the terminal devices according to the line
connections specified In the configuration data.

For a system with a Memory Management Unit (MMU) the TTABs are extended
with 16 words to contain the logical MMU addrzsses conmected with this
task.

For a segmented application the segment table SEGTAR is built, holding
status information, disk sector address, length and load address in
memory of each segment.

The corresponding page table PAGTABR is pgenerated which contains the
page queue pointers, physical page addresses and the segment block
address if the page is used.

24.6.2 Workblocks

If swappable workblocks are defined in the configuration file, each SWB
is described in a block SWBBLK which contains information about number
of copies oaf the bloeck, disk address, number of sectors occupied by
each copy, and the block length in bytes. Table SWBTAB with pointers to
all SWBBLK’s is also built.

24.6.3 Buffers

Buffer areas are reserved for data communications, data management, and
other devices or functions as required. In a system with MMU, extra I/0
buffers in the System area are alivecated. These areas are still used by
SYSLDM and SYSLDA during configuration. SYSLIM ends by generatiung the
Monitor blocks.

8:GTAB and the DWT prototypes are now no longer needed and may be

overwritten. The area occupied by SYSLDM is then released and can be
uged for application confipuration.

Ml4 TOSS Reference 24/ 4 November 1980

SYSTEM LOADING PROCEDURE (SYSLOD)

24.7 APPLICATION CONFIGURATION

Application configuration is performed by SYSLDA. An auxiliary table
with the number of tasks per taskclass is formed to build the terminal
control area table T:ATAB. For user workblocks and swappable
workblocks, tables are set up according to the number of blocks
specified in the configuration data.

If the application contalns disk resident segments, memory pages are
reserved as read only areas to contain these segments.

24.7.1 Generating the Data Division

SYSLDA and the data division prototype are relocated to make room for
the real data division, which can now be built from the PDIV prototype
and the configuration data. Workblocks with thelr deacriptor blocks are

generated.

Pointers to T:ATAB, U:BTAB, and S:BTAB are updated in P:MTAB. For a
system with MMU, task-connected MMU addresses are filled in in TTAB.
If the application contalns disk resident segments, memory pages are
reserved as read only areas to contaip these segments.

Application data can be divided into three types and building of the
DDIV is accordingly done in three steps:-

1. The part common to all tasks is generated, the CWB s and UWB's
that are used by more than one taskclass.

2. The task class data, CWBE's, UWB’s, and SWB’'s that are used
within a taskclass.

3. The task local data is generated, the Task Control Area, TCA,
the terminal stack, dataset buffers, and TWB's and SWB’s.

24.7.2 Generating the Tasks

One task of each taskclass is now completely generated.

Task cantrol areas T:A are copied as many times as indicated in the
auxiliary T:ATAB talble.

The task identifiers TID are updated in the T:A”s and saved in the
T:AID table.

Now every task 1s put in the dispatcher queue and SYSLDA gives control
to the module PFINIT to initialize the drivers. A branch to the
dispatcher is then performed to schedule the first task.

Ml4 TOSS Reference 2415 November 1980

SYSTEM LOADING PROCEDURE (SYSLOD)

24.8 ALLOCATION RULES

In a system without MMU, configuration simply consists of making as
many copies of each type of task and workblock as specified in the
configuration data. If the application 1s also not segmented,
application buffers are allocated following the monitor tables and
buffers upwards, over the area still used by SYSLDA.

For a segmented application or a system with MMU, application buffers
are allocated from the highest free address in the free area downwards.
This leaves space for memory pages for the disk resident segments
between the application buffers and the monitor tables and buffers.

24.8.1 Task Window

For a system with MMU, configuration is fairly complicated. The MMU
table with 16 entries, each needed to address 4K bytes, provides the
task with a logical task window of 64K bytes. Seguent zero, with the
common part of the data division and the task-clase common data,
P:MTAB, P:PIL, the assembler subroutines and the interpreter, must he a
part of all task windows.

This occupies the MMU table to a high degree already. The number of
entries necessary to address one page in core must also be reserved.
The reat of the MMU table entries may be used for the part of the data
division used by the task.

M14 TO0SS Reference 24/6 November 1980

SYSTEM LOADING PROCEDURE (SYSLOD)

24.8.2

Resulting Logical Tagk Window

Task data

Task class data

|
I
I

SCT |

pointers |

TWBs with related D:T's
SWBs with related D:T's
T:A with related control

information, data set

buffers and terminal stack.

CWB's and UWB's with
related D:T’s, T:D,
TWB descriptor tables

CWB’s and UWB's with
related D:T's,

T:ATAB, U:BTAB, S:BTAB

Program table

common code part,

Assembler subroutines

—_—— — - -_—
Common data
o e e e i l P -
P:MTAB !
- me e |
P:PIL {
| common paol
e
ASS |
- -
INT | Interpreter

One code page

Ml4 TO0SS Reference

one page of

. i Pt e e e e i e e

| SCTMMC |
|

| SCTLAC |
| |

disk~ or memory-resident

coding

2477

November 1980

SYSTEM LOADING PROCEDURE (SYSLOD)

24.9

MEMORY LAYOUT AT END OF APPLICATION CONFIGURATION

|~
[--
I
I
I
I
|
I
==
l
I
|

|
|--
|
I
|
!
|
I
!
|
!
|-
|
|
|
-
|
I-

"MONITOR

MONITOR
tables and buffers

Free Area

!
!
Page n |
!
DD1IV i

I

P:MTAB

P:PIL

ASSEMBLER subroutines

INTERPRETER

P: 5001

|
I
P:5002 I
|

Ml4 TOSS Reference

Pages reserved for

disk-resident segments

Segment

Segment

Segment

Segment n _

24/8

00

|
I
|
I
I
I
I
I

memory-resident
segments

November 1980

SYSTEM LOADING PROCEDURE (SYSLOD)

24,10 CREDIT APPLICATION IN SECONDARY MEMORY

The Application Load Module created by LKE.

Segment table

———

Program table

Common cude part
and common pool

| !
1 -1
I !
| [
| [
| [_
! |
: .'
| Assembler subroutines |
| |
I f
| i
} {
| I
| I
| I
! !

INTERPRETER
P: 5001 Segment 1
P: 8002 Segment 2
! l
|-~ e |
{ P:S00n { Segment

M14 TOS5 Reference 24/9 November 1980

SYSTEM LOADING PROCEDURE (SYSLOD)

24.10.]1 Segment Table (S:GTAB)

§:GTAB 1s the segment table used by SYSLDM and afterwards overwritten.

Each item is two bytes in length.

1
)

| T P:MTAB 7 Pointer to P:MTAB
— - |
| PRGTYP | Program type, CR=CREDIT
| - - | AS=Assembler
| Reserved |
| |
| Reserved |
(- e
| PAGILG | Page length(in bytes)
—— - |
| NUMSEG i Number of segments
| ol
one _| sEGTYP | Segment type; R=core resident
block | |-~= - - | D=disk resident
for | | ADDRESS | Logical record number
each | | — ——— |
segment |_| SEGLG I Length in bytes
l
|

—_———

M14 TOSS Reference 24710 November 1980

SYSTEM LOADING PROCEDURE (SYSLOD)

24.10.2 Program Table (P:MTAB)

P:MTAR is the program table used by the interpreter. It contains the
logical addresses of the tables that are set up for the application
pragram. Each item is two bytes in length.

Byte Pointers to:-
0 TtATAB - { Task control area table
2 U: BTAB —-_= User work block control table
4 I:NTPA) ! System start address (in interpreter)

|
f
[
|
! J
! !
6 | P:iBAS | Start of base module (P:PIL)
|- |
B | T:BAT | Branch address table
| - - |
fA | T:CAT | Call address table
|- SR l
/C | T:PAT | Perform address table
! -
/E | T:LIT | Literal pool table
[i— —- -
/10 | | Highest index +1 in T:LIT
| — -
/12 [T:KEY | Keytable posl table
[-
/14 | | Highest index +1 in T:KEY
[= e l
/16 | T:PIC | Picture pool table
[E—— |
/18 | | Highest index +l in T:PIC
[
/14 | T:FMT | Format pool table
I‘_..____.._,. _________________ ’
/ic | | Highest index +1 in T:FMT
f - J
J1E | P:END | End of base module (P:PIL}
. SR
/20 | T:AID | Task ID table (for CREDIT debugger)
| I
! [

/22 OPTION SYSTEM option (5COPT)

/24 | LITADR | Literal addressing mode

/26 s--;;;;;; ———————————————— ! Data addressing mode

/28 '—-;:;;;; ---------------- } Swappable workblock control table
f2A T l

|
|
|
| 5 words reserved for
{
| Assembler Debugger.
!

M1l4 TOSS Reference 24/11 November 1980

SYSTEM LOADING PROCEDURE (SYSLOD)

T:ATAB Task control area table (contains logical addresses).

Layout of table T:ATAB.

Length is the table length in bytes, including this word.
The rest of the table contains pointers to task control
areas, ie. T:iAxxy’s.

U: BTAR User workblock control table. Contains pointer to U;BTAB.

I:NTPA System start address.
Contains start address, from the interpreter.

P:BAS Start of base module.
Start address of the interpretive code module P:PIL.

T:BAT Pointer to branch address table.

T:CAT Pointer to call table.

T:PAT Pointer to perform table. ‘
T:LIT Literal pool table.

This word contains a pointer to another pointer pair, in
segment zera, which consists of one pointer to the data
descriptor table for literal constants, the second pointer
polnts to the actual pool.

The descriptor table consists of two words for each literal
caonstant in the pool.

The layout of the descriptor table is the same as for data
item (see D:zz0).

Highest index in T:LIT.
A value which indicates the highest index in the descriptor
table of segment zero.

Ml4 TOS3S Reference 24712 November 1980

SYSTEM LOADING PROCEDURE (SYSLOD)

T:KEY Keytable pool table.
This word cantains a pointer to another pointer pair in
segment zero, which consists of one pointer to the data
descriptor tahle for keytables, the second pointer points to
the actual pool.
The descriptor table consists of two words for every keytable
in the pool.

Highest index in T:KEY.
A value which indicates the highest index in the descriptor
table of segment zero.

T:PIC This word contains a pointer to another pointer pair in
segment zery, which consists of one pointer to the data
descriptor table for the pictures, the second pointer points
to the actual pool.

The descriptor table consists of two words for each picture
definition. The layoutr of the descriptor table is the same as
for data ttems (see D.zz0).

Hlighest index in T:PIC.
A value which indicates the highest index in the descriptor
table of segment zerv.

T:FMT Format pool table.
This word contains a pointer to another pointer pair in
segment zero, which consists of one pointer to the data
descriptor table for formats, the second puinter points to
the actual pool. The descriptor table consists of two words
for each format list definition. The layout of the descriptor
table 1is the same as for data items (sww D:zz0).

Highest index in T:FMT.
A value which indicates the highest index in the descriptor
table of segment zero.

F:END End of base module.
End address of the interpretive code module P:PIL.

Ml4 TOSS Reference 24713 November 1980

T:AID

OPTION

LITADR

ADRMOD

S:BTAB

Ml4 TOSS Reference 24114 November 1980

SYSTEM LOADING PROCEDURE (SYSLOD)

Task identification table.
This word contains a pointer to a table in which all task
identifiers are stored; only used by the CREDIT debugger.

Layout of T:AlID.

———— P . 0 i

0 | Taskid-1
b

+2 | Taskid-2
|

-~

Length 1s the table length in bytes including this word.
Following words contain the id”s of the user tasks.

System Options.

A value indicating the system options.
0 - Standard {No MMU, no disk paging).
1 - MMU system.

2 = Disk paging system.

3 -~ MMU and disk paging system.

Literal addressing mode.

Two bytes are used to indicate the addressing mode.
X“1111" means one byte addressing for literal constants,
keytables, pilctures, and formats.

The value is derived from the LITADR option in CREDIT..

Addressing mode.
A value | or 2 specifying which addressing mode is used.
This is derived from the ADRMOD option in CREDIT.

Swappable Work Elock Table.
Pointer to the swappable work block table.

