CREDIT PROGRAMMERS GUIDE

5. SUBROUTINE HANDLING
5.1 Introduction

Subroutines are usually small sections of a program for performing a single
function, be it initialising data items, displaying items on a visual display

screen, or carrying out a modulus eleven check, for example.

Writing programs as a series of subroutines can reduce development, testing and
maintenance time compared with a “monolithic” approach. As smaller units are
easier to understand, testing can be carried out on each subroutine in turn.

If a CREDIT subroutine is located in a different module to the routine that is
to ¢call 1it, then the calling module must contain an external directive (EXT)
giving the subroutine name, and the module containing the subroutine itself

must contain an entry directive (ENTRY) to match.

Example: Main module Subroutine module
EXT SUBI SuBl PROC
PERF SURB!

Subroutines in CREDIT are euclosed in directives starting with the procedure
directive (PROC) and =nding with the procedutre end directive {PEND).

Example:
XCH PROC
<
> CREDIT statements forming
< the subroutine called XCH
PEND

The subrcoutine name is located in the label field of the PROC directive; in the
above example the subroutine name is ¥CH, and this is the name that must appear
in the ENTRY and EXT directives, it performed from another module.

5.2. Execution of a subroutine
The transfer of control to the subroutine is achieved using the perform
command {(PERF) or the perform indexed command (PERFI), and the return of

control to the calling routine with the return command (RET).

The PERF and PERFI command beoth store o the system stack the address of the

next instructicn to be obeyed after a norwal return from the subroutine, along
with other ianformacinn on the task mnd.i.. Each stack entry occupies six bytes,
and the stack currently has o defsnlt size of 128 bytes though this may be
altered by using the stack directive. [It, for example, a large number of
embedded performs are to be made rthe =i1ze may have to be increased, and 1if no
embedded calls are to be made rhae stac’ »icce way be reduced.

TR KGR | Tt TN Ve L

: EVIRY | 1a2.7 |
! EXT | 1.2.9 |
1 PERF i 1.4.134 |
| WYRFL 1.4.135 |
] PEND i 1.2.17 |
| PROC i 1.2.21 !
f O mBET | 1.4.139 |
Sedel

Octaber 1974

CREDIT PROGRAMMER'S GUIDE

CREDIT SUBROUTINE tN THE SAME MODULE

PERF SuB1
—

SuUB1 PROC
. Lt

RET
PEND

512
QOctaober 1979

CREDIT PROGRAMMERS GUIDE

The perform command has the following format:-
PERF subname{,pl{...,pun}}

where - subname 1s the name of the subroutine to be executed.
— pl to pn are actual parameters which will be passed to
the subroutine.

The indexed perforn command has the following format:-~
PERFI index,sl{,s2...,s80}

where — index is a binary index to be used for selecting the
subroutine that is to be executed
- sl,s82...,8n is a list of subroutine names, the first
entry being regarded as entry one, so if the variable
being used for the index has a value 2 then the
2nd subroutine will be activated.

The return command has the following format:-
RET <opt. byte dis.>

The optional byte displacement specifies the number of bytes which are to be
added to the return address before the return command is executed.

The RET inscruction transfers contr~l hack to the calling routine at the
instruction after the PERF command or PLIST directive (see below), and must
therefore be the last logical instruction in a subroutine.

The address Lo which the return will be made is held on the system stack; 1t is
the byte displacement from the perform Instruction. The perform instruction may
vary in length depending on the number of parameters and the type of addressing
adopted; when the RET instruction 1is eacountered contrel is returned to that
instruction. It is possible te add a displacement to the return command to
enable a returan to a subseqguent instruction, as described above.

Example:
PERF ABC, A, B
B LI
ADD A,B
RET

On encountering the above return insiruction, control will be returned to the

branch instruction, which will transfer control to the instruction at statement
identifier LI, However as the bra.h iastruction occupies two bytes; if the
subroutine ABC is terminated by the instiuction:=-

RET 3

then contrel will be returned te the ADD instruction, as the branch instruction
occupies two bytes.,

| REFERENCE | PAGE IN MO04 |

| PERF i 1.4.134 |

j PERFI | 1e4.135 i

1 RET i 1.4.139
5,1.3

Qctober 1979

CREDIT PROGRAMMERS GUIDE

5.2 Parameter handling
5.2.1 General rules

A subroutine can access directly any data item defined in the data division
which is available to the calling routine. 1In addition & subroutine may have
formal parameters, which are local names listed in the operand section of the
PROC directive and used solely within that subroutine. When the subroutine is
executed then the actual parameters will be substituted for these formal
parameters. The actual parameters are variable names used within the calling
routine. The actual parameters are specified in the PERF command after the
subroutine name, and if the PERFI command is used then they are specified in
the PLIST directive immediately after the PERFI command. There can be up to
eight formal parameters in a subroutine, depending on the contents of the
LITADR option in the directive OPTNS.

The parameters in the calling program are called the "actual parameters” and
those in the subroutine the "formal parameters". The valid types for actual
parameters are listed below.

! boolean (BOOL) data items |
| binary (BIN) data items |
[binary arrays (BINI) |
| binary coded decimal data iteams (BCD)]
| binary coded decimal arrays (BCDI) !
| string data items (STRG) |
| string arrays (STRGI) i
| data set identifiers |
|_literals, but not those with an unspecified type or of type X {

The indexed perform may pass parameters to a subroutine, in which case all the
subroytines in the subroutine list will require the same number of parameters.
The parameters to be transferred are specified in the parameter list directive
(PLIST) located immediately after the PERFI command. The format of the PLIST
directive is :-

PLIST pl{,+s.pn}

pl{,...pn} is the list of actual parameters which will be passed accross to the
subroutine.

Example:

PERFI SUR1,8UB2,SUB3, SUB4A
PLIST ACCNO,NAME, =D 1" ,BINW4

Note: =

If an array element i{s being passed to a subroutine, then the array and the
subscript must be passed as separate parameters. In addition, the formal
parameter for the array itself must be followed by open and close parenthesis,
to indicate that ir is an array.

Example:
PERF SUB2, ARRAY, INDEX, AMOUNT
SUB2 PROC FARR (), FINDX, FAM
1 DIRECTIVE | PAGE IN M04 |
4 PLIST | 1.4.210]
5.2.1

Dc tober 1979

CREDIT PROGRAMMER'S GUIDE

ACTUAL/FORMAL PARAMETERS

IDENT __, MAIN

DDIvV

:

OLDBAL BCD
AMOUNT BCD
AUX BCD

PDIV

PERF
—

suB1 PROC

MOVE
ADD

RET
PEND

END

12
12

20

SUB1, OLDBAL, AMOUNT

/, ’ f/”

FODB, FAM

AUX, FODB

AUX. FAM

522
October 1878

CREDIT PROGRAMMER'S GUIDE

SUBROUTINE (FORMAL PARAMETERS, ARE
KEY TABLE, FORMAT LIST, LITERAL)

PERF SUB1, LENGTH, FORM1, KTAB1, =D"1’
suB1 PROC INLEN, SFORM, $KTB, $LIT
l
ADD TRANR, $LIT
!
K1 DSKB, INBUF, $KTB, INLEN, INDEX

EDWRT DSVOU, SFORM

PEND

523
October 1979

CREDIT PROGRAMMERS GUIDE

5.2.2 Literals, keytables and format lists as parameters.

There are two ways of passing literals, keytables and format 1lists to
subroutines, as follows:

Method 1

The actual parameter is specified in the normal way, and the formal parameter
is given a name which starts with a $ (dollar sign). This tells the translator
that the actual parameter to be substituted at execution time 1s one of the
three types defined above, e.g:

PERF SUB1, LENGTH, FORM1,KTABLl,=D"1"
SUBL PROC INLEN, $FRM, KTB, SLIT!

AéD INLEN, SLIT1

wer

PEND

Method 2

The formal parameter is not given a name starting with a dollar sign. In this
case, the directives shown below must appear immediately after the PROC
statement at the start of the subroutine.

PFRMT when using format lists

PLIT when using literals

PKTAB when using keytables
These are always required when ADRMOD is set to 2 in the OPINS directive, and
the formal parameter must not then be preceded by a § sign, e.g:

PERF SUB1,LENGTH, FORMI,KTABl,=D*1°

SUB1 PROC INLEN, FRM,KTB,LIT
PFRMT FRM
PKTAE KTB
PLIT LIT
I
ADD INLEN,LIT
I
RET
PEND

4 summary of rules for passing formcr lists, keytables and literals is showm
on the next page.

{ DIRRCTIVE | PAGE IN MO4 |

| PFRMT | 1.2.18 |

| PKTAB | 1.2.19 |

PLIT | 1.2.20 |
5.2.4

October 1979

CREDIT PROGRAMMERS GUIDE

Summary of rule for passing literals, keytables and format listg

name PROC
<opt>
name PROC
name PROC
<opt>

FORM1 (ADRMOD=2) $ not required
FORM1

SFORM 1 (ADRMOD=1) $ required
FORM1 (ADRMOD=1) $ not required
FORM1

name is the name of the subroutine
<opt> is either PFRMT, PLIT or PKTAR.

5.2.5
October 1979

