CREDIT PROGRAMMERS GUIDE

3. CREDIT PROGRAM STRUCTURE

A CREDIT program consists of a number of statements. A statement may be a
directive,; declaration or instruction. Directives describe the module frame-
work to the CREDIT translater; the translator is a special program which
converts the application progtram into a form the machine can use, this

output being called ‘object code’. Declarations specify the type, length and
use of all the variables, constants and tables used in the application and must
always be located in the main module. Instructions direct the imput,
processing and output of information. They specify the actions to be carried
out by the computer, and direct the sequence of events.

2.0.1
October 19748

CREDIT PROGRAMMER'S GUIDE

SOURCE

TRANSLATOR

INTERMEDIATE
OBJECT
CODE

3.0.2
Cctober 1879

CREDIT PROGRAMMER'S GUIDE

-

anN3

AlGd
NIVIN WWNaad

H00d9 LN3AI

NOISIAIQ YLv(3 Tvd0T1D V HLIM 3HNLONY 1S HVINA0W

an3 an3 an3 | and DZm_.

Aldd
NIV WNAQ
avay inN3ql

AlQd
NIYW WNAag
071240 1N3QI

NIVIA LN3AI

Aldd
NIVIA Wnaa

N340d0 1N3TI

N

AlQd
NIVIA IWNAd

0705AS LN3AI

Aldd
NIVN WNaa

NdOSAS LN3QI

AlQd
Alaag

3.0.3
October 1979

CREDIT PROGRAMMERS GUIDE

The program is written as one or more modules; with the PTS system, as with
many others, it is advantageous to have one module performing one specific
activity, as this leads to more efficient design, writing, testing and
subsequent maintenance of the application.

3.0.4
October 1979

LU R R SRS SR S BN S SRS S S S St ik S S I R S-S v T — R Wiyt A | =1 T T T, T 1 T T 7
ol 09 0& oy [+ 114 9ySLvL 618 ;9 b
1
L L L L L A A L D A R B R A | : Temm T rn rmmmmem T LA] T T T T T oT LR
|
T 1T 7 17T 17T 771 I T 1 1T 1 1T 717 T T 717 T YT T vt T - T TV LI H T 1 1 1 17T T LI T T T T 1 T
L
[S SN S S i -
Y r 17 1 1 7 ©TT 1T 17 F 17717717 717717 11T 1771777 T T T T o TT T T T T T T T T 7 ¥ T T
'
M !
| L R A AL L L L L L L R A R L Tt ST r T T T T T T LIS N A A A S R T T T TOTTTT T T
1
——— _ —
T rrrr 7T TrT3 7T 17 17 -y 1Yy o T ot TTT T T T T r—"T 1 r T T 7 T ' 3 r 1T T T L T
1
L
L I S S pt e R SR B NN S N N N N S R SN S AR A I S L T T T T 1 T
i
T T T YT T 1 T T T 7 T T 77 T 73T 11117 > - 77 mm s T T TT T T T T T R e T T 7 T
]
- + !
LA LA AN N AN SN BN B I B S B T T YT OrTTTTT ot T - R R T S B S | L e i e S - I.._.Iu..:W..!...il i R e S
I
! |
T T [iteivts B SN S S N I HRN B R D SN B S SR sty At S S H R B e | St e —— Tt - - ..W O SEE—
T T T T T T Tty Y Tr 7TTYTGD Oy T T - T RS S Sl B s i et et s S s s m S S S % [T e]
b
! i
TR AN S N | T T T T T T T T T T T EER b e ‘q,...ﬁ.||.,|.1IIJ.-J.I,»I.<\.T;\J\4,*;\"¢m\ 1 T
A=y v
i .

A A -F{zhﬁaﬂamf%ﬂu A0 o.mﬂ.rﬂzaaqhﬁhﬂﬂghﬂnuxﬁnis

CREDIT PROGRAMMERS GUIDE

; Oiu.ﬂninﬁn ﬁsu.r‘nddz 3 1> Yo T0I T o _d4o wm.m m.cﬂ% :m@.&xmm
L S S S M S S I R TR - | — - - Co - T ,,. _~.
[/ N N e S e e A e) S S N) e ..||.¢_|!4 T ..\.Jﬂ r - u,n -7
T T T T T T T T T P Ty vt - A - R it SRR S I .ﬁi - ," . W P
. 1

LN O T S My ST S I S S S S B S S T o T o IR S R Jxl,m#ﬂHJJHﬁngﬂw‘d; S #MLH..*—HH”*
I T T T . Lo - R T T i -

i] '

i 20 S S TR N S S A Nt A S I S S S B S A T R S S A M!H*.mul anH | _OAW HEE S S A e sl .r!.wl‘ T 1 “ T T
1 S 0 S E S H SR R RS S B B S S s S St sl ms Shee s S S S S S S A A SR SR A S S B SR S B B A Aﬁ" TTTTO T o 1T w T T
T T T T T Y INT RO {mau WH uucu.ﬂ er._. T @M =nIQE0TEIL 1gsq | | rgAsq
T T T T T T T T YN YT T Y T TTIOT T orTroa R Bl JI1|.|I_JJJ|<|§ J_w._ g - “ [e

CTTTUVTITTTT T U TN VT T YT T T T T oy v T v T . T T TnJ\..J,l..ﬂ.{j.j.ljl..ﬂlélguHr Jq_ T T
T T T T T T T T 1T 1 TCY §7TTYTTUT YT yor 11 o *tor T TR T : i T : L LI A B B | T T T T T T T T ‘h SH,G :“,‘1,‘] T i B
A B e A A R G AN (D A A AN S O S O S (e S S A B LN B A N M S T T 2H¢ sz_uﬁp - ." TTT T T

| .
F_R.q._ rr 1t 711 _.8. T 1 1 1 M__Om. L oy 3 . T Oﬁ LA L ..O&..,@rm_._.v_v, H__gmm “ﬂ.—am_#_.
|
SINIWWOD QNVHI4O _ NOUYY340 w He

3.0.5
October 1979

CREDIT PROGRAMMERS GUIDE

A CREDIT source program can be read into the PIS system using one of the
following source input devices; cassettes or console typewriter for free format
input, and cards for fixed format input. Regardless of the input device used,
the source program must have follow the rules described below and shown on the

attached coding sheet of examples.

A source line input ro the translator is treated as an 80 character card image;

if a free format ilnput device is used then each record can only contain ocne
source statement. Records longer then eighty characters will be truncated,

while any shorter will be filled with spaces to pad them to eighty characters.

3.0.6
October 1979

CRED1IT PROGRAMMERS GUIDE

f

f+44isr.

R A S

R e

T T %

E2 R . |

B B B S e

T T

B e e e

B T =

B e o T T,

T

T

T AL

Ty ATTTT T
T ST roaTTT T

P TTTI T T

B e

TTyvTT“€TtTTr gy v o T T

VTUTTITTTTrTOT o T or

i o
P
TOTOT

N S R - R N) H N B B R

ol T T T " T ' s ov o T oz etalw T oefe T. T
T T T T T 7 4 T T T L T T 7777777 T T ETTTT T R - - H T T T T T T TT T TOT 1 T 1 J‘lq —Trer 7 -
T T T | SN B SN (A S [S S S ni S S S sl S S S S A S A At S S S T — YT T T T T T YT T
i
TV T T T =77 T 7T T T T et e S S S A A “ T e Rl
T T T YT T T T T T T T T T T b St T T T T T 1 "..f\ - - ”1 -
T T T T 71 7 11 1 1117 -7 \n 1 A - - T L - T T ~#\ \.‘.Aléhjun_jw A
| | !
T T e T o+ 1 1§ [T 4 b § ,«
i i
B I S N it Ean S T T T T Tt TT TUT Tt - T - - H : “ I + ,4 -
S A E s e S R S A N - T et S - L S I ‘ -
‘+4 s St s St B S S it S S L T - - - - - ey I ‘ V
! |
4‘\ I e peTTETITY Y)T 1 : - i .
. _ . "
e R rzunhunm«JaﬁaaXmédqmdhh13QﬁhnFi¢Hmb“Houh//

_ 1u//mzuduhsu:o:hwnamhﬁasuknAuz¢o (anvo fToa deUnﬂxau QMM/mqhxzqmmkrmm

ANTY Lo3uMWeD ¥ 'ST STIHL *

B g § - ¥ ﬁ.H Oﬂ//./m

T %hzu::ou o4 SY Foyds wﬂrk/mhramd odruu/pqu/_mxwa

e R B TYTYOr T TTT T YTRUT T TT

YT it

YT OTTOTY Oy

SR RERREEIE TEY Ay
J-Q b rfﬁxmhz

T e s T T H 4 NhIdA

oo - . . - L S S St

Sy ..44+\<1.;r.|a|l’
— -

ziuor

v v 1, T T T 7

09
SLNIWWOD

oy oe _ 0z

me ’] 1
OZ‘@N&O NOUYHIJO ! .—mn(.__

0.7
Gctober 1979

CREDIT PROGRAMMERS GUIDE

The source line is divided into four fields or zones:- label field, operation
field, operand field and comment field. The label, operation and opemnand field
are separated by a tabulation character (\) or at least one space. The label
field begins in column one. The operand field can extend to column 7l. If the
operation and operand fields are blank to column 30 the rest of the record is
treated as a comment. Columns 73 through B0 are ignored by the translator. If
an asterisk is present in column one then the entire record will be treated as
a comment. Continuation of a line is dencted by a "C” in column 72 if card
input is being used, or in the case of free format input by (\\C) two tab
symbols followed by “C”, in the continuation lines the label and operation
field must be left blank.

3.0.8
October 1979

CREDIT PROGRAMMERS GUIDE

3.1 DIRECTIVES
Directives enable the application programmer to pass information to the CREDIT

translator. The directives do not occupy any “core” at run time. There are
six categories of directives:-

. Structure
. Linkage

. Listing

. Equate

. Parameter

. Options

3.1.1
October 1979

CREDIT PROGRAMMER'S GUIDE

IDENT
DDIV
DATA DIVISION
PDIV
PROCEDURE DHVISION
MODULE
PRGC
SUBROUTINE
PEND
END

FRAMEWORK OF A CREDIT MODULE (WITH DATA DIVISION}

312
October 1979

CREDIT PROGRAMMERS GUIDE

3.1.1 Structure directives

The framework of a CREDIT module is formed from the directives IDENT, DDIV,
PDIV, PROC, PEND, INCLUDE and END. An example of their use is given below.

IDENT Must be the first statement

DDIV(or DDUM} Start of the data division
The data division contains declarations which define the type, length and value
of data items used as operands in the program, together with declarations which
define the interface between the applications program and the PTS System.

PDIV Start of the procedure division
The procedure division contains the instructions which direct the input,
processing and output of data. It alsc contalns some declarations which must

be used in conjunction with certain instructions.

PROC Start of subroutine instructions

PEND End of subroutine instructions
Several subroutines may exist in one module.

INCLUDE The contents of a source module are included
in this module at this point

END Must be the last statement

3.1.3
October 1979

CREDIT PROGRAMMER'S GUIDE

IDENT
| bDUM DUMMY DATA DIVISION
PDIV
PROCEDURE DIVISION
MODULE
PROC
SUBROUTINE
PEND
END

FRAMEWORK OF A CREDIT MODULE (WITH DUMMY DATA DIVISION)

3.1.4
QOctober 1978

CREDIT PROGRAMMERS GUIDE

3.1.1.1 Main program structure directives

The IDENT and END directives define the start and end of a module, and must be
the first and last statements respectively of a module. The DDIV directive
defines the start of the data division, and must be the second statement of the
module containing the data division. The dummy data division directive (DDUM)
is used in all other modules in place of the DDIV directive, and it refers to
the IDENT of the module containing the required DDIV. The PDIV directive
defines the start of the procedure division.

3.1.1.2 Subroutine structure directives

The PROC and PEND directives define the start and end of each subroutine. The
IDENT, DDIV {or DDUM), PDIV and END directives can only appear once in each
module; the PROC and PEND directives must be repeated for each subroutine
present. However one subroutipne can not be physically embedded within anocher,
that is two or more PROC directives can not occur without an intervening PEND.

Example:
VALID INVALID
I [I |
| 51 PROC | | s1 PROC |
| I | I
| I f [
I I I |
| PEND i | |
i] | [52 PROC |
| s2 PROC | | |
! ! I |
I I I !
I | [I
i PEND | i PEND |
| f I I
| I | |
g f | PEND i
|

The table below gives the structure directives and the page on which they are
described in MO4.

DIRECTIVE | PaGE LN o4

i
i

[i T T o L N U

—_) g = T

INCLUDE
PDIV
PEND
PROC

.
.

*
.

e e
;

T3 R RS RO I o B2 o,

.

| | |
| j J
| I I
J | |
| | |
| IDENT | |
I I I
I | [
| | i
| | |
I [!

3.1.5
Qctober 1979

CREDIT PROGRAMMER'S GUIDE

SION3IHI4IH TVNHILXI/AHLINT

aN3

r==—NaNs 453d

“NENS
a4ds

NIVA
NXd

| btttk S

aN3d
134

204d

nos3
1X3
AHLINI
Aldd
wnad
1N3aI

448

an3

aN3d
134

wans
JOHd

|
F—— €8s 443d

no3
4488 1X3

Aee J

WdNS AYLINI
e AlQd

i
|
I |
" noa |
_ _
| |

Aldd
NIVIA IN3A)

3.1.6
October 1879

CREDIT PROGRAMMERS GUIDE

3.1.2 Linkage directives
Linkage to external modules

CREDIT modules which have to be linked into an application program may contain
references to statements or subroutines in other modules. 1In order to achieve
the correct linkages, entry points in this module and external references to
other modules must be specified. The ENTRY and EXT directives are used for
this purpose. They must be written in the procedure division.

Thus, in order for the references to be correctly handled, a module referring
to a statement-identifier in another module must contain the EXT directive to
specify that the reference is not in this module, and this must be paired with
an ENTRY directive in the other module.

Start poeints

There must be at least one START directive for the entire application. When
the system is started (i.e. the T0S5S Monitor is loaded and the application
program begins execution) tasks are activated as specified in the configuration
data to be studied later. The tasks are activated at the start points
specified in the START directives of the relevent terminal classes. The START
directive(s) must be written in the data division and must be specified as
entry points (ENTRY) 1in the procedure division (PDIV).

If more than one START directive appears in a terminal class, only the first
start point will be activated when the system is started; the other points will
be held pending and will be activated only after the first task has executed an
EXIT instructiomn.

Error control with memory management, swappable work blocks or overlay

If memory management is being used and a REENTER point has been defined for
handling disk errors, then this must also be declared as an ENTRY point.

The table below gives the linkage directives and the pages on which they are
described in MO4.

| DIRECTIVE | PAGE IN MO4 |

] |

| ENTRY | 1.2.7 !

| EXT | 1.2.9 |

| REENTER | 1.2.22 |

| START | 1.2.23 |
3.1.7

October 1979

CREDIT PROGRAMMERS GUIDE

3.1.3 Listing directives

These directives are used to control the printing of the application listing at
translation time. The available directives are:-

. LIST
. NLIST
. EJECT

EJECT when encountered issues a form feed to the printer, NLIST stops the
production of the program listing, LIST causes the listing to recommence.

The table below gives the listing directives and the pages on which they are
described in MO4.

| DIRECTIVE | PAGE IN MO4 |

I N |

| LIST | 1.2.7 i

| NLIST] 1.2.9 |

| EJECT | 1.2.22 i

l__ | |
3.1.8

QOctober 1979

CREDIT PROGRAMMERS GUIDE

3.1.4 Options directilve

This directive, if required, must be located immediately after the DDIV or DDUM
directive and controls the following items:-

. Lines per page for translator listings

. One or two byte addressing for data items

. One or two byte addressing for literal constants
. One or two byte addressing for keytables

. One or two byte addressing for pictures

. One or two byte addressing for format lists

. One or two byte addressing data sets

- Number of entries in work blocks

A one byte addressing system allows only 16 entries per work blyck whereas a
two hyte system would permit up to 255 entries. With one byte addressing up to

255 literal constants, keytables, pictures and format lists are allowed; Lf two
byte addressing were used ther there could be up to 32767.

The lines directive is overruled if the number of lines per pag:z is given when
entering the program development sytem (DOS-PTS3).

The various cptions can be written in any order.

The format of this directive is:i-

OPTNS {LTNES=decimal number, }{LITADR=decimal number, }{ADRMOD=decimal
number}
The LITADR option is followed by a four digit decimal number composed of one’s
or two’s, a one representing one byte addressing a two, two byte addressing.
The first digit of the number is for literal constants, the second keytables,
the third pictures and the fouth format lists.

The address mode option (ADRMOD) is used to specify one or two byte addressing

for data items, literal econstants, data sets, keytables, format lists and
pictures; the valid forms of ADRMOD are shown below:-

ADRMOD=1 one byte addressing is to be used (default).

ADRMOD=2 two byte addressing is tc be used; LITADR will be set by
the translator to 2222.

Example 1
OPTNS LINES=72,LITADR=2212
In example 1l there will be seventy two lines per page on the program listings,

and two byte addressing wiil be used for literal constants, keytables and
format lists; but a one byte addressing systom is te be used fer pictures.

Jei.9
Qctober 1979

CREDIT PROGRAMMERS GUIDE

Example 2

OPTNS ADRMOD=2

In example 2 two byte addressing is to be used, permitting more workblock
entries (data items), two byte addressing will also be used for the litersls.
Literals, keytables, format lists, pictures and data sets are described in
sections 3.2.8, 6.2.3, 6.5 and 3.2.6 respectively.

| DIRECTIVE | PAGE It MO4 |
| OPINS | 1.2.14 |

3.1.10
Qctober 1979

CREDIT PROGRAMMERS GUIDE

3.1.5 Equate directive

The EQU directive is used to set up constants with mnemonic names; the
prorammer uses the name when writing the instructicns, and when the program is
translated the constant Is substituted for the name. The EQU directives can be
located anywhere in the procedure division after the ENTRY and EXT directives.
The maximum value that can be held in an equate directive is 255.

The directive format is:-

mnemonic-name EQU value—expression

eg
BSP EQU X09° BSP to be replaced ty Hex. value 9
NDBS EQU BSP MDBS to be replaced by contents of BSP
CHA EQU X407 CHA to be replaced ty Hex. value 40
NGF EQU CHA+L NGP to be replaced ty Hex. value 41

| DIRECTIVE | PAGE IN MD4 |
|

3.1.11
October 1979

CREDIT PROGRAMMERS GUIDE

3.1.6 Parameter directives
These are special directives for use when passing format lists, keytables,
literals and parameters to subroutines. There are four directives used within
the subroutines:-

. PFRMT for format lists

. PLIT for literals

. PKTAB for keytables.

. PLIST for subroutine parameters

They are required when ADRMOD is set to two, or if the formal parmmeter is not
preceeded by 2 $§ sipgn, and are located after the directive PROC, see below:-

SUBF PROC FORM1 (ADRMOD=2)
<opt> FORML

SUBF PROC SFORM1 (ADRMOD=1)

SUBF PROC FORM1 (ADRMOD=1)
<opt> FORM1

<opt> 1s either PFRMT, PLIT or PKTAB.
PLIST Actual parameter list

This is used to pass parameters to subroutines that have been act:vated using
the indexed perform (PERFI) instruction.

The handling of subroutines, and the syntax of parameter passing ~.s described
in detail in section 5.

| DIRECTIVE

| PAGE IN MO4 |
| PFRMT | 1.2.18 i
| PLIT | 1.2.20 !
| PKTAB | 1.2.19 I
|_PLIST) 1.4.,210 |
3.1.12

Octoher 1979

3.2 Data division

3.2.1 Overview

CREDIT PROGRAMMERS GUIDE

The DDIV contains declarations which define the type, length ani value of data
items used by the program, together with those declarations whi:h define the
interface between the application and TOSS Mounitor. The basic layout 1s shown
below, and will be described in detail later.

DDIV
TERM
TWB
DSKB1 DSET

START
START

S4B ARG de T IR PSRRI T RIS YRR R R R SRR PR D RS

Work block declarations are located

in this section

TO
TB1

FC=20,DEV=KB

sl
s2

Directive for start of data division
Terminal class identifier

Terminal work block TBI1

Definition for keyboard input

First '+t point for this terminal class
Next ' @ point for this terminal class

PDIV

ENTRY
ENTRY

EXT
KEY EQU

Explanation of the above example

i

ii

iii TWB
iv D5KB1

51

82
SCREEN
D°56°

Start of procedure division

Entry point S1 is in this module
Entry point 52 is also ia this module
Externally held subroutine

DDIV - this indicates the start of the data division.

TERM

TBl -

DSET

TO -~ the terminal class identifier; TO is the name of
the terminal class, as described in sectiom 3.2.3.

TBl is to be used as a terminal work block for this

terminal class. A description of work blocks is given
in section 3.2.5.

FC=20,DEV=KB - assigns a dataset device to be used by
this terminal elass, which will be referred to in the
progranm as DSKBl. It has a file code of 20 and is a
keyboard device. The DSET command is described in
detail in section 3.2.6.

START~ This gives the program entry point where execution
will commence. The directive is described in section

3.2.4.

3.2.1
October 1979

CREDIT PROGRAMMER'S GUIDE

DSKB
DSJT
DSVO

CB1
RDLA
ADDLA
. INDX
DATE
WKSTR

cBz2
TB1

TB2

DATA DIVISION (1)

IDENT
DDIV
TERM
cws
cwB
T™B
TWB
START
DSET
DSET
DSET
BLK

BIN
BIN

BIN
BCD
STRG
BLK
BLK
BLK

PDIV

MAIN

T0

CB1

cB2

TB1

TB2

GO

FC=20,DEV=KB
FC=34,DEV=JT BUFL=80
FC=30,DEV=TP,BUFL=80

X'o0s80
X'00071°

10007
5

322

October 1979

vi TBl
iii

viii

ix

X KEY

CREDIT PROGRAMHMERS GUIDE

BIK - this is the start of the declarations which formm work
block TBl, work block definitions must be located at
the end of the terminal class definitions

PDIV - start of the procedure division

ENTRY S1 - the entry point Sl will be located in thi: module

EXT SCREEN - this is reference to an externally held routine

EQU D’56” - a constant is set up with the decimal value
56. The maxlmum value for a constant is 255.

3.2.3
October 1979

CREDIT PROGRAMMERS GUIDE

3.2.2 Structure of the data division

The data division is divided into two sections, the first contains the terninal
class definitions and the second defines the data items that make up the work
blocks. An example of a data division is given below, with two terminal

classes; note that the terminal classes must all be defined before the work
blocks.

BDIV
TERM TO Terminal class identifier
: TWB TB1 Terminal work block TBI1
CWB CX1 Common work block
CWB CX2 Common work block
DSKB1 DSET FC=20,DEV=KB Definition for keyboard input
DSDY1 DSET FC=50,DEV=DY,BUFL=120 vdu display
START 51 Start point for this terminal class
TERM 50 Terminal class identifier
TWB TB1 Terminal work block TBl
CWB CX1 Common work block
DSKB1 DSET FC=20,DEV=K3 Definition for keyboard input
DSPRT DSET FC=40,DEV=LP,BUFL=240 line printer
START 52 Start poiat for this terminal class
STACK 128 Stack size for this c¢lass

9 asaeazanse L R R I IR I N A A B B SR Y

Work block declarations are located
in this section

LR R R N L R I e “ B s s e m e s rsanan

PDLV

3.2.4
Jctober 1979

CREDIT PROGRAMMER'S GUIDE

T0 T1 T2 T3
S0
* * * *
#
*[MAEN
*ENPUT
»[PROCESS * MODULES (PROGRAMS}

USED BY TERMINAL CLASS TO

*1OUTPUT # MODULES (PROGRAMS)

USED BY TERMINAL CLASS S0

=Y

*{CURRENT
ACCOUNT
*E;Avwes TERM ToO
ACCOUNT TWB TB1
TWB TB2
[CURRENCY TWB TB3
EXCHANGE cCWB CB1
*[OPEN
ACCOUNT
*[CLOSE TERM SO
[ACCOUNT TWB TB4
TWB TB5
[CHEQUES TWB TB6
[CWB CB1

TERMINAL Ci_ASS

325
Cctober 1379

CREDIT PROGRAMMERS GUIDE

3.2.3 Terminal class declaration

The TERM declaration identifies the terminal class with a unique two character
identifier. This declaration is followed by the relevent work blccks, start

points, data set identifiers etc. for the terminal class. A terminal class 1is
defined as a collection of work stacions performing similar functions.

Each terminal class has its own specified work blocks, input/output devices,
entry and reentry points stack; a terminal class may consist of several work
stations. Each work station or task forming the terminal class will have its
own copy of the above mentioned items. For example terminal class S0 has a
specified stack size of 128 bytes, so each task forming that class will have
its own stack 128 bytes in size. The STACK declaration is described in MO4.

Each work station in a terminal class is identified with a “task identifier’,
which is specified at system configuration time. The first task in termimal
class TO will have a task identifier of TO, the second will have a task
identifier of Tl, the nth task wil have an identifier of Tn-l.

In the example on page 3.2.6 the task TO has been configured with four copies,
the tasks forming this class have the identifiers TO, Tl, T2 and T3.

| DECLARATION | PAGE IN MO4 |
| STACK | 1.3.22 I
1l _TeErM t o 1.2.26 |

3, 2.6
Qctober 1979

CREDIT PROGRAMMERS GUIDE

3.2.4 Start directive

The start directive gives the program entry point where program execution will
commence for this task. There must be at least one start point in a program.

1f & terminal class contains multiple start points the first will be usad at
the start, subsequent start points only being used when an EXIT is encosntered.
In the example shown In gection 3.2.2, execution will commence at S1 but when
an EXIT is encountered execution wil pass to eatry point S2.

If a terminal class does not contain a START directive then 1t can only be
invoked by another terminal class with the activate (ACTV) instruction

| DECLARATION | PAGE IN MO4 |
L START | 1.2.23]

3.2.7
Dctober 1379

CREDIT PROGRAMMER'S GUIDE

83079 dHOoMm

yms
fal 1as
ams
[5] 1as
ams
51 1as Lan amn
L 190 8MD
0L WH3L
[€] vas
ams
[z} L8s
ams
[T] ras amo |
j 4 1890
aml SML SML
_ 8L " a1 el
¥ NOILISOd | _ £ NOILLISOd Z NOILISOd
Nuom [nyom [™ yHom
€1 A Ly

gamL

tal

L NOlLLIsOod
AHHOM

oL

Lan

Lan

Lan

Lan

itan

Lan

328
October 1879

CREDIT PROGRAMMERS GUIDE

3.2.5 Workblocks

These are used Dy the programmer to provide areas of store whica can be used
for input/output buffers and work locations. There are five types of work
block:

. Terminal workblocks (TWB)
. Common workblecks (CWB)

. User workblocks (UWB)}

. Dummy workblocks (DWB}

. Swappable workblocks (SWB)

There can be a maximum of fifteen work blocks in a terminal class and 16
non~-boolean entries in a block, though this can be increased to 256 non-boolean
entries in a block if the option ADRMOD=2 is specified in OPTNS directive, as
described in section 3.1.4. Each workblock can contain up to sixteen boolean
items, as one word is reserved for these data items per block. Yon-=boolean
items occupy one entry in the workblock, except arrays which taxe up two
entries in a work block, unless they are the last item in a worx block when
they occupy only one entry.

Valid 16 entries Invalid 17 entries
TB1 BLK TB2 BLK
11 BOOL Il BOOL
NBINL BIN NBIN1 BIN
NBINZ BIN NBINZ BIN
ABIN3 BINIL (4) ABIN3 BINI (4)
ABCD4 BCD 5D°0° TELNO STRGI (40,3),10C
ABCDS BCDIL (12),50°0° ABCDS5 BCDI (12),50°0°
TBCDX BCDI (8),120°0" TBCDX BCDI (8),122°0°
ACCX BCDI {99),8D°0" ACCX BCDI (99),8D'0'
BRANCH STRGI (40),10C BRANCH STRGI (40),10C
MNGR STRGI (40,2),25C MNGR STRGL (40,2),25C
TELNO STRGI (40,3),10C ABCD4 BCD 5D°0°

The declaraction for a terminal block consists of the mnemonic for the block
type in the operator field and the name of the block in the operand field, eg:-

TWB TB1

Associated with each work block declaration will be a work block description
where each data item Eorming part of that work block is described eg:-

TB1 BLK

CASID STRG 6C*”
DEP BCH 120°0°
WHDL BCD 12p°Q”

3.2.9
October 1979

CREDIT PROGRAMMERS GUIDE

3.2.5.1 Terminal workblocks

A terminal class can contain one or more terminal workblock (TWB) definitioms,
each task within the terminal elass having a separate copy of the work blocks.
Each terminal work block will contain the data items to be used by that
terminal clags; the list of terminal work blocks to be used will be located

after the terminal identifier (TERM), the work blocks being located after :he
terminal definitions.

For example:-

TERM AD
- TWB TB1
TWB TB2
TERM BG
TWB TB1
TB1 BLK
NAME STRG 20
ADDR STRG 30
ACNO BCD 12
OVET BCD 8
BAL BCD 8
TRAN STRG 3
FLAG BCD 2D
TB2 BLK
FL BOOL

SPPROMPT BOOL
SPCHANGE BOOL
SPERCALL BOOL

SPBINW1 BIN
SPBINW2 BIN

SPBINW3 BIN
SPBINWA BIN
SPINPUT 5TRG Boc” !
SPSTRGW1 STRG ¢

In the above example the data items making up Lterminal work block TB1 wil. be
avallable to terminal classes 49D and BD, but TBZ is only available to terminal
class AQ. FEach task making up the terminal classes will have a separate copy
of the data items, and so it is not possible to use terminal workblocks to pass
information to, or receive information from other tasks.

| IDENTIFIER | PAGE IN MO4 |
CTWB] 1.3.4 |

3.2.10
October 1974

CREDIT PROGRAMMER'S GUIDE

DSKB

DSKB

cB1

RDLA

TB1

TB2

iDENT
DDIV
TERM
cwe
TWB
START
DSET

TERM
CWB
TWB
START
DSET

BLK

2
BIN

¢

BLK

2
BLK

¢
PDIV

ENTRY GO

DATA DIVISION (2)

MAIN
TO
CB1
TB1
GO ILLEGAL
FC=20 DEV=KB ;
|
s ! TERM S0
TB2 - oo . CWB CcB1
SO GO \ START SO GO
|

FC=20,DEV=KB

X'0080°

3.2.11
October 1879

CREDIT PROGRAMMERS GUIDE

3.2.5.2 Common workblocks

These are used to hold information required by more than vane task, for example
the current date and time, and may be used for passing information from one
task to another; one task may write to a data item in a coumon workblock, and
arother task may subsequently access that data item. A common workblock (CWB)
d:afinition can be present in one or more terminal classes, and all the tasks in
tie terminal classes containing that common workblock declaration are able to
access the information held in that common workblock-

For example:-~

TERM AD
TWB TB1
CWB CcX2
CWB CX1
TERM BG
TWB TB1
CWB CX2

lach task in terminal class A0 will have a separate copy of terminal work bleck
{B1 and will be allowed access to commen work blocks CX1 and CX2. Tasks in
terminal class B0 will have a separate copy of TBl but they are only al.owed
access to common work block CX2. Information can be stored in a common work
block by one task and accessed by another task. For example the supervisor may
enter the current date as part of the start of day routine, then whenev:r a
task requires the date it will obtain it from the date field in the common work
block. Note that in terminal class ACQ the order of work blocks is:-

TERM A0

TWB TB1
CWB CX2
CWB CXl

If CX1 and CX2 had been reversed then an error would occur when accessing work
blocks in terminal class BO, as in terminal class BO common work block (X2 is
located after TBl.

| _IDENTIFIER | PAGE IN MO4 |
L. _cus 1 1.3.16 |

3.2.12
October 1979

CREDIT PROGRAMMERS GUIDE

3.2,.5.3 User workblocks

In this context "user" is the work station operator. It may be necessary for
the application program to wmaintain accumulators for each work station user,
for example. However there need not be a fixed one-to-oune relationship between
work positions and users. There need not be the same number of users as work
stations and they need not be assigned to particular stations.

To maintain user information, areas of memory are required which are associated
with individual users and not with work stations. These areas of memory are
called user work blocks (UWB). One or more user work block types may be
defined for each terminal class.

Tasks may only refer to a user work block if it has been defined for their
terminal class and then only when the program has executed a “USE” imstruction
specifying the block identifier and index identifier, of that user work block.
An index identifier is an integer in the range 1 to 999 which is used to
differentiate between user work blocks of the same format.

For example:-

TERM AD
TWB B!
CWB cx2
UWB UB1
UB1 BLX
CASID STRG oC " **
DEP BChH 12D7°G”
WHDL BCD 12no”

The number of copies of a user work block is entered in the configuration data,
see MO4 page 3.4.3 for details. 1If the user work block UBl had been configured
with four copies, then to access copy three of the user work block UBL the
following section cf code would be executed.

MOVE, INDX, =W’3"
USE UB1, TNDX
ADD DEP, CSH

| IDENTIFLER | PAGE IN MO4 |
Lo _uws L 1.3.28 |

3.2.13
October 1979

CREDIT PROGRAMMERS GUIDE

3.2.5.4 Dummy work blocks

Dummy work blocks can be used to redefine the data items forming another work
block. TFor example:i- It is only possible to read from disk into a string data
item, so it is useful to have a work block which contains just the string data
item and a dummy work block containing the field definitions to be imposed on
this record. In the example below workblock TBl contains the string data item
which the record will be read into and DBl contains the redefinition.

TWB TB1
DWB DBL1(TB1) Note work block to be redefined is TB1
TB1 BLK
RUF STRG 66
DBE1 DBLK Note dummy block definition begins DBLK
NAME STRG 20
ADDR STRG 30
POSTC STRG 8
TELNO STRG 8

For example if the contents of BUF are:-
FREDERIC SHMYTHE 15, THE LOGWALK NEWTOWN LL5 I11 789=1276

Then the contents of the data item identifiers forming the dummy work blocikk DBIL
will be as shown below.

NAME FREDERIC SMYTHE

ADDR 15, THE LOGWALK NEWTOWN
POSTC LL> I11

TELRO 789-1276

| IDERTIFIER | PAGE IN M04 |
L___ows] _1.3.20 |

3.2.14
October 1979

CREDIT PROGRAMMERS GUIDE

3.2.5.5 Swappable workblocks

These can form the transition between work blecks held in the program and disk
held files. Ordinary workblocks can have preset or empty values; each time the
application is started other than via IPL, then the program held workblocks are
set to the initial state. However swappable (disk held) workblocks contain what
ever they held when the machine was last closed down.

The name "swappable work block' is derived from the fact that they can be
"swapped" or exchanged between memory and disk storage, enabling values to be
updated and held for future use. For a task to use a swapppable work block it
must issue the USE command, and when it no longer requires the swappable work
block the UNUSE command is issued which releases the block and copies i: back
to disk. It is not possible for two tasks to have the same swappable workblock
in memory at the same point in time, though there can be more than one zopy of
8 work block on disk and different tasks could access these different coipies.

The USE and UNUSE commands have two arguments:— the bleock identifier (881) and
a data item identifier. The block identifier specifies the name of the
swappable work block e.g. SBl and the data item identifier is used to specify
which copy is required.

AT IPL THE THE DISK HELD FILE WILL BE RE-SET TO THE LliiiIAL CONTENTS.

TERM AD
TWB Th1
SWB Skl Swappable work block
SB1 BLK Start of definition for SBl

The disk file for holding swuppable work blocks is called S$SWAP and is created
at sytem load time, and the confipuration file contains the details of the
block definitions; see [H04 page 3.4.4. Each copy of the work block is
referenced by a data item identifier for example:-

TERM AD
TWB TB1
CWB cxX2
SWB SB1L
SB1 BLK
CASID STRC [FI0MR
DEP BCD 120707
WHDL BCD 12p°0°

If, for example, the swappable work bilock 8Sul nad four copies specifiel in the
configuration file, then the tollowing instructions would be required to access
information held in the tnird copy of the swappable work block.

MUVE TNDX, =W’ 3"
Use S81,InuK
ADD DLP,CSH

| IDENTIFIER | PAGE IN MNQ4 |
fooooosWs | 1.3.25 |

3.2.15
detober 1979

CREDIT PROGRAMMER'S GUIDE

DSKB
DSCAS
DSSOPI

DATA SET DECLARATION

IDENT
DDV
TERM
TWB
TWB
CWB
START
DSET
DSET
DSET

PDIV

END

MAIN

T0

TB1

TB2

cB1

TGO

FC=20, DEV=KB

FC=12, DEV=TC, BUFL=100
FC=10, DEV=81

3.2.16
October 1979

CREDIT PROGRAMMERS GUIDE

3.2.6 Data set directive (DSET)

In a CREDIT program input and output devices are specified by terminal class,
and they are defined using the dataset directive (DSET). This must occur after
the appropriate terminal class directive (TERM) in the data division. The DSET
directive is used to associate a data set identifier used in the procedure div-
ision with the TQSS device type and file code. With the DSET directive it is
also possible to specify the buffer length to be used, and 1f the buffer is to
be shared with any other device. The format of the DSET directive is:-

data-set-identifier DSET FC=file code
{,BUFL=decimal number }
{,DEV=device type }
{,BUFDS=buffer data set}

FC folllowed by a hexadecimal number gives the T0S3 file code, in the example
below the numeric display is using file code 41.

The keyword BUFIL, is followed by the length in decimal notation of a fixed

length buffer te be used with this device. This must not be specified if the

1/0 operations on the device use a system buffer.

Device type (DEV) is an optional field and its sole purpose is as an iide-
memoire to the programmer., It is recommended to use the T0S35S device types as
listed in 04, as at system generation these device codes will be usel to assign
the file codes to the required devices for each terminal class.

The keyword BUFDS specifies that the buffer is to be shared with anotier data
set in the same terminal class.

For example:-

SCRN DSET FC=50,DEV=DY ,BUFL=240
AUX DSET FC=41,DEV=DN,BUFDS=SCRN

Here the VDU (T0SS device type DY) shares a buffer with the numeric display
(TOSS device type DN).

| BIRECTIVE | PAGE IN MO4 |
f . fbser _{ . 1.3.18 |

3.2.17
Jctober 1379

CREDIT PROGRAMMERS GUIDE

3.2.7 Data items

Before studying all the different types of data items available in CREDIT it is

important to have a basic understanding of how information is held within a
computer.

The system used by PIS to hold information is called binary; the presence of an
item being denoted by the value one and the absence of an item by the value
zero. An analogy can be made with a lightbulb, which is either 1lit (having
information) or out {(no informatiomn).

Within the computer this binary Information is held in BITS -~ one bit holding
one binary item; for convenience bits are assembled into larger urits called
words ~ each word consisting of sixteen bits. However as much of the work of a
modern computer is handling character strings, and all possible chkaracters can
be represented by eight bits then the computer word has been divided into twe
equal sections called BYTES, these bytes are also subdivided into two
hexadecimal (base sixteen) digits. This arrangement of units is chown in the
table below:—

hexadecimal digits

| NAME | INT. REPRESENTATION | CONTENTS |
RS B —— S |
I | | |
| BIT . | can hold a zero or a cne |
! | | !
| DIGIT | Jewus]| | four bits, can hold one hexadecimal |
i | | character |
| | | !
| BYTE | |eeeoeseas] | eight bits, can hold one IS0-7

| | | character or two hexadecimal digits |
| | f !
| WORD | Jeeveevavnansanasl | sixteen bits, two characters, four |
I | | |
| | | |
l | | !

3.2.7.1 CREDIT data items

CREDIT has several types of data items, and use either bits, digits, bytes or
words depending on how the data item is defined. The different types of data
items used in CREDIT are described on the next few pages, and listed below.

BOOLEAN

BINARY

BINARY ARRAYS

BINARY CODED DECIMAL

BINARY CODED DECIMAL ARRAYS
STRING

STRING ARRAYS
LITERALS

3.2.18
October 1979

CREDIT PROGRAMMERS GUIDE

3.2.7.2 Boolean data items (BOOL)

Each work block can itave up to sixteen boolean data items and each bcolean data
item occupies one BIT. The bit is set to one 1f the data item holds the value
TRUE and zero if it holds the value FALSE. The format of the boolean data item
declaration 1i3:-

data-item-identifier BOOL [value]

The data item identifier is the means by which this data item will be
referenced in the PDIV.

The value is an optional field which allows the data-set-identifier to have a
preset value. If the value is omitted then the default value of false is
assumed. Valid values are shown below:-

TRUE
T
FALSE
F
Boolean data items must always be the first entries in the work blocl.

Below are some examples of boolean declarations.

NAME VALUE HEMORY
CONTENTS

FLAG BOOL TRUE 1

N EW BOOL T 1

CHNGE BOOL FALSE 0

LITE BOOL F 0

DLTE BOOL 0

| IDENTIFIER | PAGE IN U4 |
L_.BooL | 1.3.15 |

3.2.19
Qctober 1979

CREDIT PROGRAMMER'S GUIDE

BIN

BIN
BIN

8IN
BIN
BIN

BIN
BIN

BIN

BINARY
w'20° —e X'0014 "
X 'F3' —— X'00F3’

5X' 315FA' — X"15FA’

4D'0100° -—-——X"'0100"
D*123456° —— X' 3456
10°5° — X' 0005’
C'NO’ —— X"4E4F
C'ANO’ — X'LELF’

———=X'0000'

2.2.20
October 1979

CREDIT PROGRAMMERS GUIDE

3.2.7.3 Binary data items (BIN)

A binary data item occupies one word (sixteen bits) and can be used for holding
items shown in the table below. The interpretation given to the contents of the
data item is dependant on the value code, the default value being type word (W)
gnd value zero. The binary data item declaration format 1s shown below:

data~item-identifier BIN [([length)value-type][*value’]]

The data item identifier is the means by which this data item will te
referenced in the PDIV.

The value type is one of the following:-

sign bit is B for positive, D Eor
negative

number with sign
(4*4 bits)

| Type | Int. representation | Notes |
| e jmmm e | ==—mmmem e e |
| W | One word | Humber in range -32768 to +32767]
| | (l*16 bits) | |
| C | Two bytes { Can contain two IS0~-7 characters

	(2%8 bits)	
X	Four hexadecimal	Hexadecimal number
	digits	
	(4%*4 bies)	!
D	Three digit decimal	Unused elements set to zerc, the
i		
I | [|
. J f |

Below are listed examples of binary data items, some with values asuigned,
together with the internal representation.

| Data item Value | Hachine form
| identifier | hexadecimal |
e E— ESSR———— |
| 5Pl BIN W 327677 | TFFF |
| sp2 3TN 4D° 100" | 8100 !
| SP3 BIN X FF* | O0FF
| SP4 3IN 2C7NO* i LEA4F i
i 5P5 BIN | 0000 |
i SP6 B1N C’'DOMINQ” i LE4F |
| sp7 BIN 3D | BOOO |
R R
Note:=-
In 5P2 the specified length includes ctie <i,n.

In SP6 only the last two characters are haeld in the item.
in SP7 the largest possible value is 999 although it was only specified as a
two digit field plus sign.

| IDENTIFIER | PAGE IN MO4 |
L___BIN | l.3.12 |

3.2.21
Qctober 1979

CREDIT PROGRAMMER'S GUIDE

DATA-ITEM-SPECIFICATION

LENGTH VALUE TYPE "WVALUE'
ITEM SIZE
BCD NUMBER OF D ‘DECIMAL NUMBE R’
(4 BITS) DIGITS
X ‘HEXADECIMAL
INTEGER'
BilN 1 WORD w DECIMAL NUMBER'
NUMBER OF D ‘DECIMIAL NUMBE R’
{4 BITS) DIGITS
NUMBER OF C ‘CHARACTER
{8 BITS) CHARACTERS STRING’
NUMBER OF X "HEXADECIMAL
{4 BITS) HEXADECIMAL INTEGER®
DIGITS
STRG NUMBER OF C ‘CHARACTER
{8 BITS) CHARACTERS STRING’
NUMBER OF X ‘HEXADECIMAL
{4 BITS} HEXADECIMAL INTEGER’
DIGITS
3.2.22

October 18793

CREDIT PROGRAMMERS GUIDE

3.2.7.4 Binary coded decimal data items (BCD)

BCD data items consist of a number of digits (4 bits) holding either a decimal
{base 10} or hexadecimal (base 16) number. The maximum number of digits that
can be held in oune data item is 255, though in the case of decimal numbers the
first digit position is reserved for the sign. The format of this Jjeclaration
is:~

data-item—-identifier BCD { length, value type { “value”] }
{ [leagth,] value type “value’ }
{ [length[, value type]] “value’ }

The data item identifier is the means by which this data item will be
referenced in the PDIV.

Length is the number of digits to be used for this data item, including the
sign.

Value type - this specifies whether the data item is to be hexadecimal digits
(value type X) or decimal digits (value type D); the default type is ‘D’

The value field ailows a preset value to be given to a data item, as shown in
the table below.

ispecified
|length |

digits will be held

| Contents of | Contents of data item | Example |
| value field | | Specified | Ccntents |
[— P R RS —
|[Not Given | Zera | 0]
! | | i
|Less Than | Value right justified | &D7237 BC0023 |
| specified { within data item] |
|Length ! | f
| I i l
|Greater than | Least significant | 4D” 26007 B&00O
| | |
| |
| |

Note:-
Either the value or the type and length must pe specified; the value must be
enclosed in quotes.

3.2.23
Uetober 1979

CREDIT PROGRAMMERS GUIDE

Examples of BCD data declarations are given below:-

| Data item Value] Machine form
} identifier | hexadecimal
-
BCD1 BCD 6D’ -23" | DO00O023 negative
| value sign
| set to D
BCDZ BCD 3D7100°7 | Bl0O rounded up
| to evan no.
[of bytes
BCD3 BCD X’ FE’ | FF¥
BCD4 BCD 6D | 000000
BCDS BCD ©12300° | B12300 (implied D)
BCD6 BCD X*ACE560° | ACE560
BCD7 BCD 5% | 000000
|

|
|
I
|
|
I
. I
|
I
|
|
I
I

|_IDERTIFIER | PAGE IN MO4 |

L. BC

3.2.24
Qctober 1979

1 i.3.10 |

I
|
I
|
[
I
I

CREDIT PROGRAMMER'S GUIDE

DATA-ITEM-SPECIFICATION

LENGTH VALUE TYPE “VALUE'
ITEM SIZE
BCD NUMBER OF D ‘DECIMAL NUMBER'
{4 BITS) DIGITS
X ‘HEXADECIMAL
INTEGER’
BIN 1 WORD W ‘DECIMAL NUMBER'
NUMBER OF D ‘DECIMAL NUMBER'
(4 BITS) DIGITS
NUMBER OF c ‘CHARACTER
(8 BITS) CHARACTERS STRING’
NUMBER OF X ‘HEXADECIMAL
(4 BITS) HEXADECIMAL INTEGER’
DIGITS
STRG NUMBER OF C ‘CHARACTER
(8 BITS} CHARACTERS STRING'
NUMBER OF X ‘HEXADECIMAL
{4 BITS) HEXADECIMAL INTEGER'
DIGITS
3.2.25

Cctober 1979

CREDIT PROGRAMMERS GUIDE

3.2.7.5 String data items (STRG)

String data items are composed of 1-4095 bytes, each byte holding one alpha-
numeric character. The format of the string data item identifier is:-

data-item-identifier STRG {[[Length,] Value type] ‘Value'}
{ [Length [,Value type]] ‘"Value®}
{ Length, Value type ["Value’]}

The-data item identifier is the means by which this data item will be
referenced in the PDIV.

Length - is the number of characters that will make up the string

Value type - 1s either character (type C)} or hexadecimal (type X), the default
being “C’.

Value - is an optilonal field and allows a data jitem to have a preset value

| Contents of | Contents of data item | Example |
{ value fleld | | Specified | Contents
|- |~ e [E— |-- |
[Not given | Spaces | !
| | [l
[Less than | Value left justified | 6L"AC” acccec |
|specified | within data item. Last| 6C7AC AC J
[length | character repeated | |
| | ! |
|Greater than | Leftmost characters | 4C"BRANCH" BRAN |
| will be stored i |
| [l
I | |

|specified

|length

___ e
| Data item Type Value 77| Machine form |
| identifier | hexadecimal |
Jm o= B |
| STRG1 STRG 6C i 202020202020 |
| STRG2 STRG 3C7ABC j 414243 |
| STRG3 STRG X FF” | FF i
| STRG4 STRG 6C ABCS | 414243434343 |
| STRGS STRG 6C"ABC ~ | 414243202020 |
| STRG6 STRG S5C"BANK I | 42414E4820)
| STRG7 STRG 5% | 00000 {
l i |

{ IDENTIFIER | PAGE IN M04 |
| STRG | 1.3.23 |

3.2.26
October 1979

s

CREDIT PROGRAMMERS GUIDE

3.2.7.6 Arrays

There are three types of arrays in CREDIT: BCDI, BINI and STRGX. They can be
either one or two dimensional. The subscript must be a binary data item. The
maximum subscript is 32767 for one-dimensional arrays. For two-dimensional
arrays neither subscript can exceed 255. Arrays occupy two ent-ies in a work-
block, unless an array is the last item in the workblock whea it occupies only

one. The rules for the storage of the values are the same as for BCD, BIN and
STRG data items described above.

The general format for an array declaration is:=-

data-item-identifier type (S81(,52])(,[length] typel [‘valie ...l

Tt

81 - is the "row" subscript

$2= is the "colunn” subscript for two dimensional arrays

‘value”... ~ this enables the array to be initialised. If fewsr values are

provided than there are elements in the array, then all remaining elements are
filled with the last provided value, e.g.

BRANCH STRGI {40),10C "LONDON “,’ROME ‘,"PARIS *,” *°
This sets up a forty element array containing branch locations; as only three

exist at this point the unused elements are filled with asterisks. The first
six elements of this array are shown below:-

element contents
(1) LONDON

(2) ROME

(3) PARTS

{4) KALAAARRKK
(3) AxmkkhkRki
(6) LR TS 3

If the contents of an element are less then the string length then the last
character is repearted, if for example the declaration had takea the following
form: -

BRANCH 3TRGL (40), 107 LONDONT ,"ROME”, "PARIS ", **
Then the contents of the first six elements would be:-

glement coenrents

(1) LONDONNTNN
(2) ROMREEEREES
(3 PARISSE3558
{(4) Jok & Kok Kokok
(3) ook e kA
(6) kkkkkirkxsk

3.2.27
Notehar 1979

CREDIT PROGRAMMERS GUIDE

For a two dimension array the data ltems should be ordered by rows then
columns, for example:-

MONQUA STRGI (3,4),10C"JANUARY *,"FEBRUARY *,”MARCH ‘,’APRIL *,
“MAY” ,“JUNE *,"JULY *,”AUGUST ‘,”SEPTEMBER ~,
“QCTOBER °, NOVEMBER ~,’DECEMBER *
This would set up a table of the months in each of the four quarters of the

year, the month in the quarter being the first subscript, the second the
quarter of the year. The machine representation would be:-

. Element Contents Element Contents Element Contents
(1,1) JANUARY (z,1) FEBRUARY (3,1) MARCH
(1,2} APRIL (2,2) MAY (3,2) JUNE
(1,3 JULY (2,3) AUGUST (3,3) SEPTEMBER

(1,4) OCTOBER (2,4) NOVEMBER (3,4) DECEMBER

The binary declaration is similar to that for strings, an example of a two
dimensional binary array is given below.

TAB BINI (4,4)”1’,'2”’3',’4’,’5"’6"’7”'8’,’9',’10’,X’B',
X’C’ L, XD, X E",X P, X107
Element Contents Element Contents Element Contents Element Cortents
(1,1) 0001 (2,1) 0002 {3,1) 0003 (4,1) 0004
(1,2} 0005 {2,2) 0o0e (3,2) u007 (4,2) (008
(1,3 0009 {2,3) 000A (3,3 0003 (4,3) (00C
(1,4 000D (2,4) 000E (3,4) Q00F (4,4) 0010
| IDENTIFIER | PAGE IN MO4 |
] BCDI | 1.3.11 |
i BINTI | 1.3.13 |
| _STRGL | _ 1.3.24 |
3.2.28

Octaber 1974

CREDIT PROGRAMMERS GUIDE

3.2.8 Literals - overview

With CREDIT there are four distinct catagories of literals; these are literal
constants, keytables, pictures and format lists; after translation each of
these literals will be held in separate pools.

3.2.8.1 Literal constants

These are the normal form of constants used in a program and have the general
form:=-

=[Value type] ‘value’

Value type 1s one of those listed in the table helow

i Type | Int. representation [Notes]
< mmmmm e AR |mmmm e U |
[W | One word | Number in range -32763 to +32767 |
| | (1*16 bits) I l
C	(n) bytes	Can contain (n) 180-7 characters
i (n*8 bits)		
X	¢(n) hexadecimal digits	Hexadecimal number n iigits long
	(n*4 bits)	
D	(n~-l) digit decimal	Unused elements set to hex F

| | number with sigun ! Sign bit is B for positive, D for |
| I (n*4 bics) | negative |
e

Note: -

Literal constants can never form the destination part of an instruction, in
that a constant wmay be added vr moved to a data item, but a data item can not
be added or moved to a literal coastant.

Examples of literals are:-

=72 Typeless literal

=y 457 One word contalning valae 45
=C'BANK IN.” Character string

=6D"~97892" B{D ceoustant

=X"20307 Hexadecimal constant

5

Morpober 1979

CREDIT PROGRAMMERS GUIDE

3.2.8.2 Keytables

These are used for holding lists of character codes which could be used to
terminate keyboard input. Only hexadecimal (type X) or character (type C)
data items may be used in a keytable. A description of keytables is given in
section 6.2.3. The format of a keytable declaration is:-

key-table-name KTAB {literal constants }

{EQU data items }
For example
B3P EQU X'05°
° CLEAR EQU X"19°
CLR2 EQU X"00"
EOI EQU Xr12°
CANCIL EQU X147
CANC2 EQU X'15°
SPKTAB1 KTAB BSP,CLEAR,CLR2,EQI,CANCL,CANC2

3.2.8.3 Picture literals

These are used when formatting numeric itews for display or printing purposes;
either for output of for re-displaying an input item. Picture literals can
only be used with the FMEL instruction. Some examples of picture liter:zls are
shown in the table below:

| Picture Data item Result
RS S — |
I |
| “AAA9997 BFFO456 0456 {
| |
| " XXY-XX" 2702 27-02

| I
fPXXY-XX" FEFF |
| I
[79909° B123 1203

I I
| “F+%%vg” DF11 *-1.1 i
| I
799,99 B123 12,34 |
| |
| “99B99° 652] 65 02

I I

3.2.8.4 Format lists

These are used to hold format layouts for the output of information. Examples
of format lists are shown below, and are described in more detail in section
6.5.
ERFMO1 FRMT

FSL

FTEXT “TOO FEW INPUT CHARACTERS”

FMEND

ERFMO2 FRMT
FCOPY =X*203t"
FTEXT "RETYPE ANWER YES OR Nu: *
FMEND

3.2.30
October 1979

