ASSEMBLER PROGRAMMERS REFERENCE MANUAL PART 2

1. TOSS MONITOR
1.1 tntroduction

This chapter describes briefly the structure of the TOSS monitor and the relationships
between the Monitor components.
The reasons for including such a description in this Manual are:

¢ To enable the application programmer to understand the effects of Monitor requests.

¢ To illustrate the relationships between tasks, Monitor and hardware. This information
is especially useful to programmers who wish to generate a TOSS Monitor.

® Tointroduce TOSS specialist programmers to the general concepts of the TOSS
Maonitor,

1.1.7
December 1977

ASSEMBLER PROGRAMMERS REFERENCE MANUAL PART 2

1.2, General Description

The TOSS Monitor is divided into the following logical functions:

¢ Interrupt handlers

e LKM processors

I/0 drivers

Dispatcher

Tables

Other Monitor programs.

Reference will be made ta the diagram on the next page which illustrates the
relationship between the various components of the Monitor. Note that this diagram
does not show every module in the Monitor. The diagram has been simplified so that
only the major modules and entry points are shown.

The following components are not considered:

Monitor Initialisation Program

¢ Monitor Configuration Program

& Assembler Debugging Program

Reference numbers appear in the comer of each box in the diagram. These numbers
are referred 1o in the following sections.

These boxes are grouped into modules. Each box represents an entry point in the con-
taining module. The module name is shown in the top box of the module.

1.2.1
" December 1977

1llegal op code
intarcupt

FF indar-apt

LKM interrupt

ASSEMBLER PROGRAMMERS REFERENCE MANUAL PART 2

RTC intsrrupl

IHINPT
Interrupt hanaler

LRPINT

Interrupt hendlers for _KMa, resl tioe zlook and powsr failure,
Entrisay

For tllagel
op codés
{subroutinv sall

IHRTC = upgate real time clock and activate CLOCK tesk.

interprater).

IHPF4R = hancle powsr failure and reptari (uses table PFTAB to ceil power feilure routineal,

11

THLEM - test raqueat typa; process reguest typs O imeitch tasks)

if mot request type O.

or branch to LKM processcr

il

TRROC
LKW grocesaors for:

ketivate and restert lreguest types
4,4}, Entry TACTOT,

]

-

wait {(requast type 2), Entry TWAIT,

al

Exit {raguest typs 3}, Entry TEXIT,

-

GHULF LGASE + TARCAT Tazl TIMER
LEM oroe- LEM prpc-- LeM pirpe- LKN proc- LKM oroce
GBS essorx for; aasor for essor Tor qager for sasors far;
Entr'yTan‘ . lesding a aperiing am ansigning &
aagment 1/0 requeat datla manay-
Interrupt hangler
for 11lagal {roquent [raquast emant File Dalay/delay
gk,
interrupts. Get buf far T.yp? 9. type 10} coae & ‘ctlvztmn rt—
(requast Aetivate [recuest {rea,t,
LLTESK 15). T IME
B tye <71, . type 15) Ent il
Entry Get time he—
GETHUF, rc"l {rog,t. 12).
f—
HALT Entry F;
MACHINE felanse SFITIM
ouf fer Set time
[roquest (req.ts 13).
i
Lyps &1, Ertry
Ent RELELF | 7 g 1c SETTIM F

Pause (requast typs 5}, Entry TPAUSE,

=

Input/output ireguest tyzes 1,-1},

2]

Entey 18,

MORT TOR NUCEENS
APPLICATION TLSKS

l

1 TiTTY JHKAC DACFC1 [Fad o) LRDGY
170 arrver fch 145G draver 17G arjver for 170 driver for 1/0 oriver for
data managemsn for keyboards. Ganeral dise unit, data
Q fetivet oy Terrinal cormunications dware 1/0
IMTASK, 1 30 Printer, 22 23) intereupt
. frat ¢ { The inclusign of
ratjren "
I Line vhe orivers in the
o 1 Monitor depence upon
the harawary config-
‘ oRLT } uration uses in the
o system, & selection
140 drivers for Iycal and remrate of arivers is shown
% WOrk gositgns, I in the rox to the
X 24 laft,
O U R H
3 J b
TR
Scheduies ail teaks om & "firal in firet out' besis within pricrity, E;
o — T T = o ‘{
I MONITOR TASKS
! 3
| |
ipplicaticn taske. CREBUG 1 omrask L
CREDIT Debugging | . Fewl tims oloex Gegmant losging
tanh., Data management s ten
' Task iclentity TH tash, Tase dentity Ak i
may includa the DUr where nis
CREDIT interpreter 1) orz
or noditional Pranty 49, Tni
P - Lusk calls drer
unctions, r DRLUT via
LKM 1equest,
| —
i] e

\
1.2.2
May 1978

ASSEMBLER PROGRAMMERS REFERENCE MANUAL PART 2

1.3. Interrupt Handlers

An "interrupt’ is an event which causes control to be passed,at the completion of the
current instruction, to one of the “interrupt vectors” held in memory words 0 to 63.
An interrupt is automatically generated in response to one of the following events:

® Power faiture

o LKM request

® Heal time clock update

e Execution of an iliegal instruction
® Completion of 1/Q action

The particular vector entry used depends upon the type of interrupt.
Each vector entry contains a pointer to an associated “interrupt handler”,

For example memory word 0 contains the interrupt vector for power failure. When
power failure occurs the sequence of instructions currently being executed is interrupted,
and control is handed to the instruction pointed to by memory word 0 {in the power
failure interrupt handier).

As can be seen from the above diagram the interrupt handlers in boxes 1, 2 and 4 are
self contained : they do not call any subsidiary modules. The handler in box 2 terminates
by halting the machine. The handlers in boxes 1 and 4 terminate by branching to the
Dispatcher (box 25). i

The interrupt handler for the real time clock (box 3} activates a special clock task {box
29) every 100 milliseconds.

The handler terminates by branching to the Dispatcher {box 25). The interrupts for
completion of 1/Q action are serviced by the appropriate device driver {box 22 for
example),

The interrupt handler for LKM requests processes only reguest type 0. The interrupt
handler saves registers A1 to A14 and if necessary branches to one of several "LKM
processors’” to process the remaining types of LKM requests. These processors are
described in the following section.

1.3.1
December 1977

ASSEMBLER PROGRAMMERS REFERENCE MANUAL PART 2

1.4 1 KM Processors

The LKM processors perform the following functions:

e Task scheduling (boxes 11, 14, 16 and 17)
e Input/output (boxes 9, 10, 15 and 18}

e Buffer control {boxes6 and 7)

o Memory management {box 8)

e Monitor clock control {boxes 12 and 13)

A particular processor is invoked as a result of a LKM instruction executed in a task.
As described in section 1.3, this instruction causes an interrupt. The DATA directive
following the LKM instruction contains a numeric request type.

This is used by the interrupt handler (box 5) 1o select the required LKM processor
(boxes 6 to 18}.

The LKM processors in boxes 6, 7,9, 11, 12 and 13 (i.e. modules GRBUF, TABORT
and TIMERY} are only included in the Monitor if they are specifically requested during
system generation. The LKM processor in box 8 {i.e. module LOADER]) is only in-
cluded if memory management is requested during system generation.

The LKM processor in box 10 [i.e. module TASS) is only included if data management
is requested during system generation, The LKM processors in boxes 8, 7 and 9 to 17
are self contained. They do not call any subsidiary modules. These processors terminate
by branching to the Dispatcher (box 25).

The LKM processar for segment loading (box 8) activates a special loading task {box 30),
via a8 normal LKM request, to carry out the loading process. This processor terminates by
branching to the Dispatcher (box 25),

The LKM processor for 1/0 corizrol {box 18} branches to the appropriate 1/O driver
(boxes 19 to 24 for example! 1o execute the |/O request, 1/0 drivers are discussed in the
next section.

1.4.17
December 1977

ASSEMBLER PROGRAMMERS REFERENCE MANUAL PART 2

1.5 1/0 drivers

1/0 drivers perform device control functions and (optionally) process data communica-
tions and data management |/O requests. The type of function to be performed is
speciﬁed in register A7 by the requesting task. Examples are as follows;

/00 Test Status
/01 Basic Read
/02 Standard Read
/03 Numeric Read
/05 Basic Write
/06 Standard Write
/0A Random Read
/0B Random Write

Further parameters are specified in an "event control block".
The address of the event control block is placed in register AB by the current task.

A separate driver is available for each type of device (for example boxes 20 to 22 in the
diagram} and some devices may have more than one driver {for exampie keyhoard}. The
required drivers must be built into the Monitor during system gengration. Separate drivers
are also available for performing device control (e.g. box 24} at either local or iocal and
remate work positions comprising one or maore of the following devices:

Keyboard

Teller Terminal Printer

General Printer

Numeric Display

Indicator Display/Keyboard Lamps
Video/Plasma Display

The devices must be connected to the Terminal Computer via a Channel Unit for Local
Terminals {CHLT} and/or a Channe! Unit for Remote Terminals (CHRT). Devices
which are used locally (i.e. not via modems} must be connected to the CHLT. Devices
which are used remately (i.e. via modems) must be connected to the CHRT.

One of two drivers may be_used to control devices attached to the CHLT and CHRT.
Driver DRLTOT is used to control devices attached to the CHLT. Oriver DRRTO1 is used
to control devices attached either to the CHLT or CHRT. That is driver DRLTO1 con-
trols locally connected devices only, and driver DRRTO1 contrals both locally and
remotely connected devices. Only one of these drivers are included in the Monitor during
system generation.

Driver DRLTO? or DRRTO1 is normally entered only from the individual device drivers
for the above devices (for example boxes 20 and 21}. The only exception to this rule is
the *“test remote line”’ function. In this case the driver DRRTO1 is entered directly from
the LKM processor (hox 18].

Drivers DRLTO1 and DRRTO1 terminate by branching to the Dispatcher {box 2b).

The drivers for the remaining devices not listed above (for example box 27) are self
contained. That is they do not enter any additional driver. These drivers all terminate
by branching to the Dispatcher.

1.5.1
December 1977

ASSEMBLER PROGRAMMERS REFERENCE MANUAL PART 2

A separate driver is also available for each type of communication line discipline.
Only one type of communication driver can be included in the Monitor at one time
(for example box 23). These drivers terminate by branching to the Dispatcher (box 25).

I/Q drivers for devices and data communication are only included in the Monitor if
they are specifically requested during system generation.

A separate driver TIODM is available for data management (box 19). This driver
activates a special data management task {box 27 — one task per disk drive) to process
data management requests. This task issues a disk 1/0 LKM request to perform the
actual /0 via the disk driver {(box 22}. Driver TIODM terminates by branching to the
Dispatcher (box 25). The data management driver is only included in the Monitor if
data management is requested during system generation.

1.5.2
December 1977

ASSEMBLER PROGRAMMERS REFERENCE MANUAL PART 2

16 The Dispatcher

Previous sections have described the way in which interrupts (LKM request,
completion of [/O action etc.) are processed by the Monitor. When the processing
of an interrupt is complete, control is handed to the Dispatcher.

The Dispatcher then determines which application or Monitor tasks are able to proceed.
1f several tasks are able to proceed a task is chosen on a "first in first out” basis within
priority level. Registers A1 to A14 are restored for this task and the task is entered via
a RTN instruction.

The RTN instruction automatically enables interrupts to occur. Any interrupt of an
equal or lower pricrity which occurred during the processing of the last interrupt
would have been gueued. On the RTN instruction being executed this interrupt will
take effect immediately and control will again be passed to an interrupt handler.

However, if no interrupt has been queued the task will begin execution. Execution of
the task will continue until another interrupt occurs {(which may of course be a LKM
instruction executed by the task). When processing of this interrupt has been completed
the task will again become a candidate for scheduling. And so on.

A task may exit by issuing a LKM request type 3. The Dispatcher will then delete all
recard of the task and the task will cease to exist.

Another task may be activated by the running task issuing LKM request type — 4.

A task may pause itself by issuing a LKM request type 5.
A paused task may then be restarted by another task issuing a LKM request type 4.

A task may be placed at the back of the dispatcher queue and cause the task at the head
of the queue to be called into execution by issuing a LKM request type 0 {switch tasks).

Exit, activation, pause, restart and switch are all controlled by the LKM processors and
Dispatcher.

In order to identify and schedule tasks, each task must have a task identifier and
priority level. Application tasks must be assigned a task identifier and priority leve! dur-
ing system generation. Monitor tasks {e.g. data management task, segment loading task)
have a predefined task identifier and priority level and need not be specified during
systern generation,

The scheduling of tasks by the LKM processors and Dispatcher is illustrated in the
following diagram.

1.6.1
December 1977

ASSEMBLER PROGRAMMERS REFERFNCE MANUAL PART 2

(2)
.
‘ o DISPATCHER QUEUE
i
1
(7} RUNNING
TASK
1) PENDING QUEUE } (3)
(6) TASKS AWAITING COMPLETION {5
OF AN EVENT e *EXIT

The following notes refer to the numbers in the diagram:

1. Tasks are dispatched from the dispatcher queue “first in first out” within priority.
That is, each task as it becomes available for dispatching is placed at the back of the
dispatcher queue. When selecting a task for dispatching, the Dispatcher considers
only the tasks with the highest priority level. The task at the front of the queue in
this priority level is chosen for dispatching.

2. A running task may activate or restart another task. The new task is placed at the

back of the dispatcher queue and the running task continues.
3. A running task may activate itself {(normally at a different start point from the

original one). However, the Dispatcher cannot schedule twa tasks with the same
task identity at the same time. For this reason the newly activated task is placed in
a pending queue and the running 1ask continues.

4. When the running task performs an exit LKM request the pending task with the

same task identity is placed at the back of the dispatcher queue.

5. When the running task issues certain LKM requests {e.g. 1/0)} it must wait until the
requested event is complete. During this time the Dispatcher will select another

task from the dispatcher gueue and the original task will not be considered for

dispatchinag.

1.6.2
Pecember 1977

ASSEMBLER PROGRAMMERS REFERENCE MANUAL PART 2

6. When the event is complete the waiting task is placed at the back of the dispatcher
queue.

7. A running task may request that it be placed at the back of the dispatcher queue
and that the task at the head of the gqueue be called into execution.

For an example of scheduling using the LKM request 1/0 and activation see
appendix A.

When the dispatcher queue is empty the Dispatcher simply performs an “idle loop”
{priority Jevel 63} waiting for a task 10 be queued. This situation will arise when, for
example, all tasks are waiting for 1/0 to be completed. As soon as an i/0 is completed
& hardware interrupt will pass control to the appropriate device driver. The driver will
then call a routine to queue the waiting task in the dispatcher queue and hand control
to the Dispatcher.

1.6.3
December 1977

ASSEMBLER PROGRAMMERS REFERENCE MANUAL PART 2

1.7 Tables

The Monitor uses a large number of tables to record the status of the various com-
ponents of the system.

Three of the more important tables are:

® Task control table (TCTAB)

» Task table (TTAB)

e Device work table (DWT])

The following diagram indicates briefly the contents of these tables and the reiation-
ships between them:

TCTAB TTAB4 DWT 1
table jength pointer to dispatcher channel
queue parameter
pointer to TTAB1 reserved priority status
level
pointer 1o TTAB2 task identitier pointer to ECB
pointer 1o TTAB3 pointer to pending last order
queue character | code
pointer 1o TTAB4 tast segment pointer to device
load address driver
J-" JL" painter to segment pointer ta TTAB
1 — dispatch address wait/activation
indicator
pointer to TTABN srved A1 device gueue link
,-t:_- L device output
= —~ queue
saved A4 | '
!
table 'length i |
file code 1 I |
f i
pointer to DWT 1) |
file code 11
pointer to DWT 12

There is one TCTAB in the system, 1t points to each TTAB in the system. There is one
TTAB per task. TTAB points to each DWT used by the task. There is one DWT for each
device in the system, though the CRED!T debugger requires a second DWT for the SOP
switches.

TCTAB, TAB's and DWT's are built up from the task definition information supplied
10 SYSGEN or MONCON. The pointers in TCTAB occur in the order in which tasks
were defined during task definition.

The first task in TCTAB is the task activated by the Monitor when the application is
first loaded into memary.

1.7.1
December 1877

ASSEMBLER PROGRAMMERS REFERENCE MANUAL PART 2

1.8. Other Monitor Programs

1.8.1 Introduction

The following additional programs {not shown on the above diagram) may be included
in the TOSS Monitor if they are requested during system generation:

e Monitor Configuration Program
& Monitor Initialisation Program

These programs are discussed in the following sections.

1.8.2 Monitor Configuration Program

The Monitor Configuration Program {(MONCON} is executed by the TOSS Monitor
during the system start process. MONCON will read certain parameters from a
Monitor configuration file supplied by the user. These parameters are used by MONCON
to generate certain Monitor tables required for the application tasks.

MONCON is then overwritten in memary.

MONCON is only executed if it has been requested during system generation.

H MONCON is not requested the parameters must be keyed-in to SYSGEN during
“task definition” and ‘“common device definition”.

The objective of MONCON is to provide the user with a quick and simple method of
supplying certain parameters to the Monitor which are likely to change relatively

frequently. These parameters may thus be altered without having to re-generate a
TOSS Monitor.

1.8.3 Monitor Initialisation Pragram

This program enables the user to restart the TOSS Monitor at address /92 without hav-
ing to reload the Monitor.

This facility is normally only used for program testing via the Assembler Debugaing
Program. It is only included in the Monitor if requested during system generation.

1.8.1
December 1977

ASSEMBLER PROGRAMMERS REFERENCE MANUAL PART 2

1.9. TOSS System software

In addition to the TOSS Monitor, other software components are available which run
under the control of the Monitor. They are:

¢ CREDIT Configurator

e CREDIT Debugging Program

e CREDIT Interpreter

& TOSS Utility Programs

* Additional functions

These components, together with the TOSS Monitor, are known as TOSS System
Software.

The CREDIT Configurator, Debugging Program and Interpreter are described in the
CRED!T PRM {M04).

The TOSS utility programs are described in the TOSS User Specification (M17) and in
chapter 4 of the present Manual.

The additional functions are described in the Assembler PRM (MO6 Part 1).

1.8.1
December 1977

