CREDIT REFERENCE MANUAL

4 CREDIT DEBUGGING PROGRAM

4.3 Introduction
The CREDIT debugging program (CREBUG) is an interactive diagnostic task which runs

under the control of the TOSS Monitor, on systems with and without memory manage-
ment, It runs in parallel with a CREDIT application program being tested.

CREBUG may be used to control the execution of the application program in the
following ways:

e Traps may be inserted.

e Verification may be started and stopped.

e The application program may be started or stopped.

¢ Variables may be examined and modified.

e Trace may be turned on ar off,

In addition, CREBUG may be used to:

e Perform calculations (e.g. on addresses).

Dump Memory.

Readers of Section 4 should be familiar with the following DOSB800 System
Software concepts:

e Linkage editor

e Control command

» User library
TOSS system operation

These concepts are explained in the DOS6800 System Software PRM {M11}.

411
May 1979

CREDIT REFERENCE MANUAL

4.2 Running CREBUG

CREBUG is automatically built into the application load module by the Linkage Editor.
If CREBUG is not required {e.g. for production versions of the application program] it
must be explicitly excluded, This procedure is described below.
CREBUG has a task identity of TB and runs at priority tevel 55, specified in the
configuration file for system loading (SYSLOD}. The CREDIT interpreter calls
CREBUG immediately before executing each instruction in the application program,
The application program status is then checked. |f certain conditions specified by the
programmer are met, either the program is stopped or specified memory locations are
printed.
The programmer communicates with CREBUG via one of the following device configur-
ations:

General printer PT56321, together with alphanumeric keyboard PTS6234 or 6331.

Console typewriter PTS6862,

Visual display unit PT56344,

The chosen device configuration must be assigned TOSS file code /21 for tnput and
{31 for output. File code /16 must be assigned to a {line) printer, when tracing is used.
This is done during TOSS system generation.

The memory size of the application program is increased when CREBUG is included.
For this reason it is advisable to explicitly exclude CREBUG when linkage editing the
production version of the program. The following command sequence is recommended:

USERID : X
S:INCL_J/OBJCT,INT:PROD
S:KPF/O

SCR
S:INCI_/OBJCT,Y
KPF/O

MOV LJIMAIN,/S,USER
S:KPF /S,MAIN
S:TRA MAIN,NL
S:TLKLMIX
S:LKELJUM
S:KPFL_I/L.MOD NAM

where: X is an empty user library and Y is the user library containing the CREDIT
Linker object modules.
MAIN is the module containing the data-division.

421
May 1979

CREDIT REFERENCE MANUAL

4.3 CREBUG input

4,31 General

Various single character commands may be keyed-in by the programmer to control the
testing process. These commands are:

Set trap

Proceed from trap

Locp through trap
Remove trap

Start or stop verification
Go

Halt

Open data item

Open boolean data item
Open Relocation Register
QOpen Task Control Area/Condition Register
Open memory word
Open byte

Turn trace on or off
Calculate

Dump memory

Kl. Lock segment

KU Unlock segment

4.3.2 CREBUG Modes

CREBUG operates in one of two modes known as T mode and U mode. In T mode
CREBUG is running and the application program is stopped. [n U mode both CREBUG
and the application program are running. T mode is seiected whenever the application
program stops.

S~V —ITO<<rvH

A stop occurs when:

a halt {H) command is keyed-in, or
e atrap is encountered in the application program, or
& averification halt condition is detected.,

U mode is selected when one of the following commands is keyed-in:

¢ proceed from trap (P)

e loop through trap {L}

e go (Gj

Cammands other than H, P, L and G will not result in a change of mode. The current

mode is indicated by the letter T or U printed at the left of each line of cutput.
immediately after System start CREBUG is in T mode.

4.3.3 Current Task Identifier/Current Segment number

In certain commands a task identifier/segment number may be specified. |f no task
identifier or segment numper is specified in these commands, the ‘current’ task
identifier/segment rumber is assumed. This is the identifier of the task or segment
number which was executed when the program halted last.

4.3.1
May 1979

CREDIT REFERENCE MANJA .

4.3.4 Relocation register

CREBUG maintains 16 relocatior registers for the whole application, also when
memory management is used. The -z isters a0z numbered 0 to F and may be used in
commands as indices when referrmq te e mory incations in the segments. The contents
of relacation registers may be exar U adified 1using the Q command. The
following description itustrates the wwav 0. A7 o0 rejocation registers are normaily used.
The start address of the mocule. currently ‘; @iy e@‘fer* and its segment numoer are
loaded into & relocation register. Commands then refer to locations within th's module
by gquoiing the address relative “o The start of the modalg, listed by the transiator
under the heading LOC, togethar weih the segment number. Loading relocation register
4 with the start address of the mod - whics 13 present insegment 1, is done as
foliows:

4Q/0000 11E.1

A trap in this module and segment 1s set as @ 72, 47,

For non segmented program ir memory always segment number zero must be
specified.

When starting an application, reioeatinn register [conitaing the start address of the
program code {P:PIL}, but this register is not used when setting traps. Program code is
found by using the segment number and for rnon segmented applications, segment zero
is specified. Register F contains minus eight {X'r FF8') which can be used 1o bias
addresses from the linkage editor map.

4.3.4 Addressing

The following commands contain references to memory addresses:

1d
G,PTY
MV.W,/

Either relative or absolute addresses may be used in these commands.
If an absolute address is used it may be wriiten in either of the following ways:

hexadecimal-number [index)
Sdecimal-number{index]

The absolute address of a memory word is its displacement from word zero of memaory,
If the address refers to the start of an array, an index value must be given to specify the
word within the array {counting the first word as one).

if retative address is used it may be written in the above manner. But if the relative
address refers to a word in a procedute division, it must be modified by the appropriate
segment number as follows:

hexadecimal-number [index] .segmentnumber
$decimal-number[indexi .segimantnumber

The relative address of a memory word is its displacement from word zero of the
CREDIT module of which it forms a part. Relative addresses are shown ina CREDIT
module under the heading LOC {Location counter).

Commands | and J may only refer to addresses in the data division.
Commands G,P,T and Y may only refer to addresses in the procedure division.
Commands MV, W and / may refer to addresses in either division.

4.3.2,
May 1979

CREDIT REFERENCE MANUAL

i order to differentiate between the index and the location counter generated by the
CREDIT translator, addresses referring to the data division must be prefixed by a #
character (e.g. #18W),

Indirect addressing may be used in the following open variable commands:

Open data item {1}

Open task control area/condition register {S)

Open memory word (W)

If an address is indirect it must be prefixed by an asterisk {e.g. * 1T0W). In case the
address will point to a memory word which contains the address of the variable to be
opened. | the resulting address is odd the next {lower) even address will be used,

4.3.6 Command syntax

Commands are keyed-in immediately after the T or U prompt, The prompt is printed
at the left of each line by CREBUG.
Commands have the following syntax:
targl;] [arg2] [:{tidlpha}] [.segnr] com
com is one of the singte character commands listed above.
tid is the task identifier of the task to which the command applies. Task identifiers
are defined during system loading time (SYSLOD).
segnr is the segment number,
pha is a physical memory area. The current user is default. {Only with MMU systems.)
pha may be defined as :S§, : X, :Y or :Z. Each value assigns a specific physical
memaory area,
!5 System area, 0--64Kb
X Extended area 64Kb—128Kb
'Y Extended area 128Kb--192Khb
:Z Extended area 192Kb—256Kb

Argl and arg2? are defined as follows:

argl 1 =[term
terms

arg2 1= argl
term = [{::}1 address[index} {,relocation-register]

-

terms ;. = term{ + }term

index 1 = (hexadeciméi—integer [,hexadecimal-integer]}
$decimal-integer Sdecimal-integer

address :: =] hexadecimal-integer
$decimal-integer

relocation-register :. = 01112|3{416|61718191AIBICIDIEIF
The following words, used in the above syntax definition, have the same meaning as that
given in Appendix 1.

decimal-integer
hexadecimal-digit
hexadecimal-integer

4.3.3
May 1979

CREDIT REFERENCE MANUAL

4.4 CREBUG Output

4.4.1 Program Stop Message

Whenever the application program stops CREBLUIG prints the following message:
¢ pp=loc,rel.segnr:tid

The significance of these fields is as follows:

c This code indicates why the program stopped. [t may have the following
values:
5 — System start is complete and the application program may be started.
T — A trap has been encountered.
H — An H (halt} command has been keyed in.
V — A verification halt condition has been detected.
E — The application program is in error.

pp This is the value of the program pointer. It points to the interpretive instruction
which will be obeyed when the program is restarted.

loc This is the location counter value for the instruction pointed to by the pp. it
is the value found under the heading “LOC"" for this instruction in the CREDIT
module listing. This value, when added to the contents of the relevant relocation
register, gives the value of the program pointer. If no relocation register is found
for the current segment “loc,rel” will be replaced by the word “SPACE".

rel This is the relevant relocation register. When added to “LOC" it gives the value
of the pp.

segnr The segment number in which the program is halted. for non segmented
programs, segment number zero is printed,

tid This is the task identifier. It is the identifier of the application task which is
currently executed.

4.4.2 Command Responses

The response to commands 1, J, Q, S, W, / and = is printed immediately after the
command on the same line. For example, open retocation register (Q):

10Q/0000 0006.2

In this example, the programmer keys in the underlined characters and CREBUG
prints the others.

The response to the other commands, appears on the line after the command. For
example, dump memory (M):

0004.0M €B

208C 0153 1081 3002 831C 0053 2181 4910 4000

If an undefined command is keyed-in, CREBUG responds with a question mark and
no action is taken,

If an illegal command is keyed-in, CREBUG responds with *‘NO!”’. An example of an

illegal command is a go {G) command issued while the appiication program is actually
running,

1.4.1
May 1979

CREDITRESIDINIE MANUAL

4.4.2 Curtan Printout

if the output from s CREBUG command is unexpectedly long (e.g. a large memory
durnp} it can 2 curisiled by depressing any SOP switch or by switching the terminal
computer powsr off and on.

CREBUG uses fiie code /14 for SOP input, which can be included at system generation
time.

£ A5 [Firororeissges
Do oo Seboveing messages may be output, when the CREDIT debugger detects an
arrar

PLLEGAL UPERATION

MEXED ARTHMETIC

iLLEGAL TYPE

ODD WORD 2AD2DRESS

MISSING Loy

TLLEGAL BEQUESTED LENGTH

STalK UNDERKFLOW

ARPTHMETIC GVERFLOW

STACK DVERFLOW

INDEX DVERFLOW

TLLINOEX TYPE

DY BY £cRO

EDITBURFER OVFL

EDITPICTURE OVERFLOW
LLOCATHON ERR AT INITIALIZATION

ILLEGAL INSTRUCTION ADDRESS

ILLEGAL FURMAT CODE

NO FIX BUFFER ALLOCATED

FIXBUFFER NOT AL LOWED

ILLEGAL CONTROL CODE

TLLEGAL INDEX VALUE

FORMAT CONDITIONS CHANGED

Wi EGAL PARAMETER

LENGTH ERAOR

DATASET 8LISY

ILLEGAL DATASET REFERENCE

DISK ERROR NO 8EENTER POINT

4.4.53 Trap Jommsnds

In order to 2xamine the state of a program at a certain stage in the execution, the
prograc s nay insert traps. A trap is an address specified to CREBUG at which the
progrem o stooned 4 stop message {(described above) is printed by CREBUG and the
systam ther waits Tor 2 further command from the programmer.,

Frye owtrenion anowhien the trap s set is not executed until the program is re-started.
Haowevar, o slz 1o loop a number of times through a certain trap before the

BrOGEaf, L g

-

Ay acnnoe of T4 aDs 21 4 trme may be set,

4.4.2
iMay 1979

CREDIT REFERENCE MANUAL

4.4.6 Open variable commancls
These commands are:

— Open data item (1)

— Open boolean data iterm 14

— Open relocation register {QY)

— Open task contral arca/vondition register {7)
— Open memory word (W)

— Open byte (/)

An open and modify comman has the toliowing form:

..... Dexxxlargl{: udiphal 1 [segaricom

xXxX is the contents which will ba rerdaned optionally by argl,

The function of these commands is to print the contents ot the specified variable, and
if requested, modify those contents. This is done in the following manner:

~— the programmer specifies the variable and keys in nne of the above commands, This
is done according to the norma command syntax rules,

- CREBUG responds by printing the contents of the variable {/xxxx).
The variable is now open”, i.e, it can be maodified,

— If necessary the programmer can naw key-in a new value for the variable. if the
variahle is not to be modified, the programmer simply keys in an LF or CR character
and the variable is “'closed”,

Where possibie the above dialogue is all printed on a single line, for example:
EQ/0000 2042.2 €

in this example the programmer keys in the underfined characters and CREBUG prints
the others.

“E" indicates that relocation register E is to be opened (command Q). CREBUG responds
by printing out /" followed by the contents of retocation register £ “0000". The
programmer then keys in the new value "2942"" followed by the segment number and a
carriage return character. The CR indicates that the variable is to be closed.

If a line feed character {LF} had been keyed-in instead of CR in the above example, it
would indicate that the current variable is to be closed and that the variable at the next
{higher) address is to be opened,

If an @ character has been keyed-in, it would indicate that the current variable is to be
closed and used as the address of the next variable to be opened (i.e. indirect addressing}.
This variable will be automatically opened. The @ character is meaningfui only in
commands I, S and W,

Any other non-hexadecimal character in this position would result in the current variable
being closed without modification and without opening the next variable.

if the programmer does not wish to modify the contents of the opened variable, it can
be closed without modification by simply keying-in a CR or LF character immediately
after the current variable contents.

The possible values of the terminating character are summarised as follows:

® CR — close current variable
e LF — close current variable and open next variabie
& @ — close current variable and open indirectly addressed variable.

443
May 1979

CREDIT REFERENCE MANUAL

A.4.7 Command reference

4.4.4
May 1879

CREDIT REFERENCE MANUAL

G

Syntax:

Description:

Example:

Ga G

(i) arg2 [.segnr] G

i) G

A go command enables the programmer to start an applieation program
which has stopped.

(i} Start the program at address ““arg2"”’.
Current segment is default.

{ii} Start the program at the address pointed to by the
program pointer.

0005G start at location 5 in segment O

0007.3G start at location 7 in segment 3

0004,2.4G start at location 4 modified with relocation register 2,
in segment 4,

4.4.5
May 1979

CREDIT REFERENCE MANUAL

H Halt
Syntax: (i} :tdH
(i) H
Description: (i} Halt the task specified by “tid”.

{ii} Halt the program (may be any task).

Example: :BOH hait for task B0
H halt program

446
May 1979

CREDIT REFERENCE MANUAL

| Open data Itemn I

Syntax: arg2 [:tid] |

Description: This command can be used with binary, decimal or string data itemns. If
the item is binary it will be opened. |f it is decimal or string, it will be
printed but not opened. The current “tid” is default. To open string-or
decimal data items, the “IX"" value from the listing, must be preceded
by a # sign, and followed by “W",

Example: 37(31/0005 Open eiement 3 of the array, referenced in the listing by 37.
501/0002 Open binary data item referenced by 50, for current task.
#31W/2020 Open string data item referenced by 31
#42W/B137 Open decimal data item referenced by 42
501:B0I/0521 Open binary data item referenced by 50, for task BO.,

44,7
May 1879

CREDIT REFERENCE MANUAL

J Open boolean data item Jd ¢
Syntax: arg? [:tid} J
Description: This command is used to open a baolean data item, The current “tid”
is default. ‘
Example: 104/0 Open boolean data item referenced by 10 for the current task.

104:B0J Open boolean data item referenced by 10 for task BO.

4.4.8
May 1979

CREDIT REFERENCE MANUAL

KL

Syntax:

Description:

Example:

Lock segment kL

arg2 KL

The segment specified in arg2 becomes main memory resident, it
stays resident unti! an unlock segment {KU) command is executed.
The command KL can be used before making a patch in a segment.

2KL Segment 2 becomes main memory resident,

44.9
May 1979

CREDIT REFERENCE MANUAL

KU Unlock segment KU §

Syntax: arg2KU

Description: The segment with the number specified in arg2 will no longer be main
memory resident,

Example: 2KU Segment 2 released from main memory.

4.4.10
May 19759

CREDIT REFERENCE MANUAL

Syntax:

Description:

Exampie:

Loop through trap L

(i} arg2L

(i) L

{i} Loop “arg2"” times through the current trap.

(i} Loop once through the current trap.

Note: This command can only be given when the application
program is stopped at a trap,

bL loop 5 times through current trap
L loop once through current trap

4.4.11
May 1979

CREDIT REFERENCE MANUAL

M

Syntax:

Description:

Examples:

Dump memary M

(i} argt;arg2 {:{ tidipha}] [.segnr] M
{ii) arg2 [:{ tidlpha}] Laegnr] M
{iii} ™

The contents of selected memory words can be printed, When one or
more lines have been printed CR {carriage return) or LF (linefeed} may
be givan. If CR is keyed-in the command is terminated. (f LF is keyed-in
the next eight memory words will be printed.

(i} Dump memory words from address “arg?’’ to address "arg2”
inclusive, Current 'tid” is default,

(i} Dump eight memory words from address “‘arg2’’. Current “'tid"’
is default.

{iii) Dump eight memory words from the address of the [ast word
dumped,

0004; G018 M Dump memory words 4 to 18 of the user area of the current task
0004; 0018:BOM Dump memery words 4 to 18 of the user area of task B0
0004.5; 0018.5M Dump memory words 4 to 18 of segment 5

0004; 0018::8M Dump memary words 4 1o 18 in the System area.

4412
May 1979

CREDIT REFERENCE MANUAL

Syntax:

Description:

Proceed from trap P

(it argl; arg2 [:tid] [.segnr] P
(i) arg2 [:1id] [.segnr] P
{iii) P

(i} Setanew trap at address “arg1’’ and set the loop counter to “arg2”,
Remove current trap and proceed with program execution.
Current segment is default.

{ii) Set atrap at address “arg2” and set the loop counter to zero.
Remove cutrent trap and proceed with program execution.
Current segment is default,

{iii) Remove the current trap and proceed with program execution,

Note: This command can only be given when the application program
is stopped at a trap.

4413
May 1879

CREDIT REFERENCE MANUA!

Q

Syntax:

Pescription:

Example:

Open relocation register Q

(i) arg2Q
iy Q2

{iy Open relocation register “"arg2"’. Only the last four bits are
significant. 16 relocation registers are available, numbered from
hexadecimal ‘0’ to ‘F'.

{iil Print ali relocation registers.

5Q/0000 (1 3D.0 Relocation register b is |oaded with the start
address of MOD2 (3D, from the load map), modified
with the start address of segment 0.

44,14
May 1979

CREDIT REFERENCE MANUAL

R Trace R

Syntax: {i} arg2R
(i) R

Description: This command is used to trace the execution sequence of sore specific
instructions or all. The trace mode is defined in arg2 and can he:

0 — switch trace off

1 — trace branch instructions

2 — trace all instructions

3 — trace arithmetic instructions.

{i} Set trace mode to “arg2’’. This affects all tasks.
{it) Stop tracing.

4415
May 1979

CREDIT REFERENIE AN AL

Syntax:

Description:

+
A%}

+
=Y

+
[8)]

Srarrinie:

DO LA

Tuaas susk o Loutrod area S Condition register S

T apimimana oon be used To open @ word in the task control area
(TAY or to open a condition register,

The current “tid”" is default.

The aridirasses of the (tems in the TCA are shown below.

r 1
iRk H
ﬁ; :" TL: - ‘F Format Control Block {33 words)
: “ Data set Control Blocks.
o DSCE's L 10 words per data set. The layout
L corresponds to an ECB.
j
s i Current Segment End.
CSi { Current Segment Base.
CEN Current Segment Number,
T:DAD Pointer 1o task descriptor table.
ClA Current Instruction Address.
P10 Task identifier,
- -
i STRE Stack end pointer.
v .
| Pa Auxiliary Stack pointer
[
H
PiTeE Stack Base pointer
e
[« Descriptor table address.
¢ N
L Work block address.

{ib Waord 2 {hexadeeimal) within the TCA is opened.

woi=d ol TOA of task AQ.
sen condinon register of current task
BT Upery condg:tion register of task AQ.

CREDIT REFERENCE MANUAL

T Set trap T

Syntax: (i} argl;arg2 [:tid] [.segnr] T
(ii) arg2 [:tid] [.segnr] T

Description: (i) Seta trap at address "‘arg1”* and set the loop counter to ““arg2’.
(ii) Set a trap at address "‘arg2’’ and set the loop counter to zero,

Note: If a "“tid" is specified the trap affects only that task. If no
“tid" is specified, the trap affects all tasks. Current segment
is default.

4.4.17
May 1979

CREDIT REFERENCE MANUAL

A

Syntax:

Description:

verify \' ‘

(iy arai, arg? Dodl Voxx
(i} arg? ol W

The verify commanid instructs CREBUG to continuously monitor the
contents of a specific memory word, referenced by argl, during program
axecution. When the memory word assumes a specific relationship (equal
ta, greater etc.) to a given value, in arg2, the program is stopped.

A stop message is printed by CREBUG and the system waits for further
commarnd from the programmer. Verification is only permitted on com-
pete 16 bt memary words,

() XX specifies the relationship to be tested for, and can have
the following values:

£C meaning: {argl) = arg2
e meaning: largl) > arg2
LT meaning: {argl} < arg2
NE meaning: {argl] # arg2
NG meaning: largl} + arg2

NL meaning: {argl) - arg2
top program when the contents of “argl” and the value in “arg2”
meets the specitied relationship in XX,
Current * tid” is default.
{1y Stop verification at “arg2”,
{tii} Stop all verifications.

diq 18
May 19797

CREDIT REFERENCE MANUAL

w Onen Memory Word w
Syntax; {iy arg2 [:{tid ! Dha}] [.segnr] W
(i) w
Description: (i) Open memory word at address “arg2”, Current "'tid" is default.
(ii}

Reopen the memory word specified in the preceding W command.

4419
May 1979

CREDIT REFERENCE MANUAL

Y Remove trap

Syntax: (i} arg2¥
iy Y

Description: (i} Remove the trap at address ‘arg2”.
{ii) Remove all traps.

4.4.20
May 18789

CREDIT REFERENCE MANUAL

f Open Byte

Syntax: (i) arg2 [:td] [.segnr] /
i/
Description: {i} Open byte at address “arg2".

Current segment is default.
(i) Re-open the byte specified in the preceding / command.

4.4.21
May 1979

CREDIT REFERENCE MANUAL

= Calculate =

Syntax: arg2=

Description: This command is used to calculate (add/subtract) with hexadecimal
values.

Example: 34 + 1F

= B3
——
l l_-) calculated result,

arg2 command

4.4.22
May 15789

