S Al A

CAgwd ArFE

ipui 1o the #T35 systern via cards, cassette, flexible disk or
the source module is held on disk. All the processors and
s manusal read input from disk and write output to disk.

ne sequence of processes needed to develop and

317 source modules.

atelv by the CREDIT Translator. The Translator
e modules. The instructions in these modules use a
75, Bach module may contain references to:

wapies and pictures in the sarme module and/or in the same

) ’i‘EQr‘uiﬂs, in the same segment and/or in other segments.
dules.

e e oace actictiad by the CREDIT linker,
ing types of reference are satisfied by the Linkage Editor. This processor
1 wduie from the foliowing object modules:
ing CHEDIT linker,
cdules (if referenced).
- Assemble
- CRELD 37,
srogram (i requested).
ecuted directly. Each instruction must be interpreted by
tines within the Interpreter actually perform the
T code. For this reason the Interpreter is built into
~ditor.
ar ¥ required, must aiso be built into the load module.
ive diagnostic task which, if present, is executed in
paraliel wi c:arsm being tested. Via the Debugging Program the
programmaeai can conoeos and control the execution of his program,.
‘»wrw(} i1 Mmemo Ty for execution the work biocks, stacks,
2d for a particular system, are set up. This
10D,
& ihvage editor are all run under the DOS
e By th linkage editor, however, must be run

uﬁk DT«
the CRE

The Deb

When the *09(‘1 e
()a? SENEN

rvinad moduie, control is handed to the
wuration is compigte, control is handed
< carried out using one or more work

» % being used, execution can be controlied

CREDIT REFERENCE MANUAL

Development of a CREDIT Appiication Program

LINE

EDITOR

i

CORRECTIONS

PARAMETERS

g,_l,m
]

! SYSGEN

TOSS

MONITOR
LOAD

Q}saf‘ 7

AODULES
e sem g

LINKAGE
EDITOR

APPLICATION
LOAD
MODULE

SGURCE
STATEMENTS
ON CARDS

CREDIT
INTERPRETER
& CREBUG

! USER
ASSEMEBLER
ROUTINES

CONFIGURA.- C
JION DATA

]

‘b ?

TOSS
MONITOR

APPLICATION
PROGRAM,

$PDISC j

—
MONITOR
APPLICATION
CONFIGURA.
JION DATA

1Pl

INTERPRETER,
CREBUG, - .

SYSLOD
(Overwrites itself)

2.1.2
May 1979

V_y

$PCAS

Note: Dotted lines indicate
method of creating
monitor, abplication
and configuration
data for IPL from
cassette.

CREDIT REFERENCE MANUAL

I any application program errors are detected du ring testing, one or more source
modules will have to be corrected. This may be done via the Line Editor — an
interactive text editor. Each corrected source modufe must then be re-processed
by the CREDIT Translator. The whole program must then be processed by the
CREDIT Linker and Linkage Editor prior to re-testing.

TOSS system software comprises the foilowing components:

— Monitor

— System Loading Program

— CREDIT interpreter

— [CREDIT debugging program]
— [Assembler debugging program}

These software components are not described in a separate manual. Information
concerning TOSS System Software which is needed by CREDIT programmers is
contained in this manual.

The following software components, though part of DOS6800 System Software, are
discussed in this manual:

e CREDIT Translator

e CREDIT Linker

They are discussed in this manual because they are used by CREDIT programmers
only. The remaining DOS 6800System Software components used by CREDIT
programmers, notably the Linkage Editor and Line Editor, are described in the
DOS6800 System Software PRM (M11).

213
May 1979

CREDIT REFERENCE MalvUAL

2.2 CREDIT Translator
2.2.1 Introduction

The CREDIT Translator is a processor which converts CREDIT source

statements into intermediate object code. Source modules are translated separately,
resulting in the production of individual object modules. References between chject
modules and references tc external routines etc., are not resolved by the Transictor.

Readers of Section 2.2 shouid be familiar with the following DOS68G0 System
Software concepts:

e Control Command
Processor

EOQF mark

Source input device
Temporary source file
Temporary object file

These concepts are explained in the DOS6800 System Software PRM (M11}.

2.2.2 Runeing the Translator

Source moduies must be read into the System by issuing the control command RDS
{read source}, RDS will read the source module from the input device {card reader,
cassette or console keyboard) and will create a temporary source file. The module
must be terminated by an :EQF mark. {f the module has been read into the System
previously and kept {control command KPF}, a RDS command will not be necessary.

it is strongly recommended that all temporary object files are scratched (and kept if
necessary) before the Transiator is executed. This will ensure that ti1e output object
modules will not be corrupted by existing files.

The transiator is called into execution by the following control command:
TRAu{ /s } [,NL]
name

where: /S indicates that the input source module is in the temporary source file.
name is the name of a source file in the library of the current user identifier,
11 indicates that the input source module will be found in that file.
NL indicates that no listing of the module is required. Error messages
are always printed.

The interrediate object module created by the Translator is written into the
ternporary object file. If this file already contains object modules, the following action
is taken. I it has not been closed by an EOF mark, the intermediate object module is
written afrer the information already held in the file. if it has been closed by an EOF
mark, a new tempaorary object file is created and the old one is deleted.

2.2.7

May 1979

CREDIT REFERENCE MANLIA L

223 Transiator Listing

2.2.3.1 General

listing in three parts. Part one contains
2 object code and error messages. Parts
wble and the procedure label table, The

During transiation e Transiator goneratos
the CREDIT source statesments, intermed
two and three contain the ddtm Hem rams
fotiowing sections doarribe o :

The listing can be suppressed if the NL ontian is specified on the TRA control
command. ! this case, aniy the erqar massuges wiil be printed,

2.2.3.2 CRED!T rode snd Frror Messages
v

The format of this part is shown in the foliowing example. The example is taken from
the procedure division, The dats division lsting is slightly different. The differences
are noted in the explanaiion which Tolows,

At the left of the listing under the heading LOC is the location counter. This is a four
digit hexadecimal counter which is sieppad by one each time a byte of intern zdiate
object code is gererated, {n the data division a two digit hexadecimal counter called
X (for index) is used.

The next eight items, under the headings OC (operation code} and OPERANDS, comprise
the generated interpretive instructions. Each item is a two digit hexadecimal code. The
significance of these codes is described for each instruction in the Instruction Reference
Section (1.4.8). Object code is not listed in the data division.

The item urder the heading LINE is a four digit decimal line counter,

The remaining items are self-explanatory, They comprise CREDIT source statements.

£rrors in the source module are reported by the Translator. One of the following
messages is printed immediately after the line containing the error:

01 Memory overflow {job aborted)
02 Sequence error

02 Directive missing

04 Syntax error

05 Length truncation (no error accumulation)
06 Multidefined

07 Undefined

08 Unexpected vaiue

09 Undefined type

0A Unexpected type

0B 1llegal constant

0C Lit pool overfiow

0D Label missing

OE llegal value def
OF lilegal const length
10 lllegal const type

11 Too many blocks

12 Too many data items.
13 = Block size overflow

14 Too many datasets

15 Too many parameters
16 Too many start stmts
17 lllegal dimension,

18 Too many values.

19 Out of range.

1A Unspecified parameter.
1B Parameterlist overflow,

222
May 1979

CREDIT REFERENCE MANUAL

In addition to the error message an asterisk is printed to show the position at which
the error occurred.

An error count is maintained by the Translator and is printed after the END directive.

If a fatal error occurs (1/0 error, table overflow, etc), the source input is read until
an EOF mark is encountered and the following message is printed:

FATAL ERROR HAS OCCURRED. NO OBJECT CODE PRODUCED.
The object file is then deleted.

2.2.3.3 Data Item Name Table

The data item name table is listed immediately after the CREDIT code and error
messages. For each data item declared in a work block it contains the following:

NAME This is the data item identifier.

REF This is the index number assigned by the Translator. Index numbers are
printed to the left of the data itern declarations, under the heading ‘I X".

TYPE This is the data item type specified in the data item declaration. The
following mnernonics are printed under the TYPE heading:
BCD (decimal}, BIN (binary), BOL (boolean) and STR (string).
A letter U foliowing one of these mnemonics indicates that the data
item is not referenced in this module.

2.2.3.4 Procedure Label Table

The procedure {abe! table is printed immediately after the data item name table.
For each identifier appearing in the procedure division it contains the following:

NAME This is an identifier specified by the programmer in the procedure
division, or it is the name of a System routine referred to by the
generated object code.

REF This may be an index to a format list, a key table or an external table.
' It may be a value specified in an equate directive. [t may be the
contents of the location counter (if the identifier belongs to an
instruction or PROC directive).

TYPE This indicates the type of identifier. The following mnemonics are used:
ADR Address of an instruction
EQU Equate directive
EXT External label
FOR Format list
KEY Key table
PRO PROC directive
FLB Format label {address of a format item)
FTB Format table

A tetter U following one of these mnemonics indicates that the identifier
is not referred to in this moduie.

223
May 1979

CREDIT REFERENCE MAN AL

8|qe} Ay e 0] 80UaIa1RY = M|
15| 1BULIOJ B 01 90UBIB4AY = 44

31dINVXT DNILSIT apoa uoiielado 1o QHMHNMN _mwnwywm - XX
HOLVTISHYHL 110340 1 |ess1n =11

3)NPOW SIYY U] 3DUBIY = HY
NOILONYLISNI IHL 40
NOILVLNISIHd3Y

NOLLY ST 41N IVNIDIAYXTH
IOV INIT HILNNOD HILNNOD
NGILVANILNGD SININWOD LNIWILVLS 3DHNOS NI NOILVD01
i i 1 A
Mt o ‘ 1 1T 1
0L0Dd0 €S 2GE0 40 46 §100
PAVINEdNYTL HONYS 443d 1GE0 1721 XX 2100
ALl LNIAE1DI8HOY 001040’ LOdNI'GIHSYDD3 8s 0560 S0Zv 09 0z 3000
6VE0
0L0240 8S 8v£0 90 45 D000
I4340 avad M=, B M=EEVINNAVIE J43d LYE0 17973 XX 8000
0L00d0 9v£0
5v50
350715 LNIYd PLOWE4'LrdLSA LHMA3 VrE0 4498 XX 0E 5000
Xi231SY Lhid £00WY 4’ 11d1SA LYMA3T £vE0 33168 XX 0E 0000
01040 ZVEO
. LbE0
" OvED
I1NAOW S0 TYNINEIL AYINI . 6££0
» 8550
" 1£€0
10373 9550
a9 INIWNOD SANVHIA0 00O 1387 ANIT SANVHIAO D0 00T

9000 3IDvd . L4¥090 . SOTO40 LIN3IAI NOISIAIAQ 38NQ3004Hd , 025082 L'€13H HOLVISNVYHL 113340

:r?a
May 1979

CRELIT REFERENCE MANUAL

2.3 CREDIT Memory Management Linker
2.3.1 Introduction

The CREDIT memory management linker is a three pass processor which converts
intermediate object code, produced by the CREDIT translator into object code which
can be processed by the Linkage Editor. The CREDIT linker is capable of linking both
unsegmented and segmented programs.

Intermediate object modules may contain references to:

Labels in the same moduie.

Literal constants, formats, key tables, pictures in the same module.

Labels in other CREDIT modules in the same segment.

Labels in other CREDIT modules in other segments.

Assembler appiication modules.

Assembler Sysiem routines.

The first three types of referenice, when present in the same segment, are satisfied by
the CREDIT linker.

The remaining types of reference must be satisfied by the Linkage Editor.

To build up the segments, different possibilities exist which are the same when using
extended main memory, secondary memory or a combination of both.

Readers should be familiar with the following DOS6800 System Software concepts:

¢ & 6 & & @

e Control command

e User library

e User identifier

e Temporary object file

These concepts are explained in the DOS6800 System Software PRM (M 11).
2.3.2 Buiiding up segments

After translation of the different CREDIT modules a number of intermediate object
modules have been created. All these modules together building up a CREDIT application,
are input to the CREDIT linker (TLK).

The CREDIT tinker kas to know which modules should be contained in the segments.
This is specified by the user by means of the ordering of the modules as input to the
linker. In the TLK command is a parameter [n or mK) defining the maximum segment
size to be used.

However, the NOD command (node) can be used to force an immediate end of a segment
and also to define the segment as main memory resident {(NOD s R} or belonging to the
common ares, segment 00 INOD 1.5 C}. The common area, segment 00, is always present
in main memory and will contain the data division, the interpreter, assembier sub-
routines and /or user routinegs, The size of the common area is variable and not
dependent on the size parameter in the TLK command. Segrment 00 is automatically
created.

Wher the NOD commea
will e disk rosidert, W
resident

5 used without specifying R or C as parameter, the cagment
e NOD command is not used, the segments will be disk

2.3.1
May 1979

CREDIT RETEENOE MANUAL

inte ditfereny wodules as: dare div
axherl the conmon part, segmant 30

aupsd inte segments in the order in
w:11§ are numbered from

Sorin examples showing the use oFf NOD and TLK

a. System with BAK Byrte mam memuory,
INC

D

LAY

EE R W gy 4
NG MOD3
TLK Ul X

b, System with 84K Byie maio maniory wog use S secondary memory, (Disk, flexible
disk}.

e
Sle

INC MDD {3.5Kbytes)

INC MOD2, USER1 {0 7K bytes)

INC MOD3, USER2 {G.5K bytes}

iINC MOD4 {ZKbytes)

INC MOD5 {2Kbytes)

INC MOD8, USERS {1Kbyte)

NG MOD7 (2K bytes)

TLK UMAK

Four segments are created by the linker, and all are disc resident
{Segment zero always resides in main memory)

Segment Contains MG (3.5K)
Segment 2 Contains MGD2, MOD3, MOD4 (3.2K)
Segment 3 Contains MOD5, MODS {3K)

Segment 4 Contains MODY {2K)

By means of altering the sequence of the INC commands, the user can optimize his
program segments. In this example onty 50% of sement 4 is filled.
When e.g. MODb5 must be present i1 segment 0, the following sequence of commands
has to be specified:
Size
NOD C
INC MODb {2K bytes)
NOD
INC MOD1 {3.5Kbytes)
INC MOD2, USER1 {0.7Kbytes)
INC MOD3, USER2 {0.BKbytes)
INC MOD4 (2K bytes)
INC MOD6, USERS3 {1Kbyte)
INC MOD7 {2Kbytes)
TLK UM, 4K

232
May 71879

CREDIT REFERENCE MANUAL

Segment 1 contains: MOD1
Segment 2 contains: MOD2, MOD3, MOD4
Segment 3 contains: MQOD6, MOD?7,.

MODS5 is now included in the common area, segment zero.

When also MOD 1 must be main memory resident, but not in segment O, then the
following command sequence can be used:

NOD C

INC MOD5
NOD R

INC MGD1
NOD

INC MOD2, USER1
INC MOD3, USER?2

INC MOD4
INC MOD&, USER3
INC MOD7

TLK U,M,4K

Size
(2Kbytes)
(2Kbytes

(3.5Kbytes)

{0.7Kbytes)
{0.5Kbytes)
(2K bytes)
{1Kbyte)
{2Kbytes)

Segment 1 contains: MOD 1 {3.5Kbytes)

Segment 2 contains: MOD2,MOD3,MOD4 (3.2Kbytes)

Segment 3 contains: MOD6, MOD7 (3Kbytes)
c. System with extended main memory, up to 256Kbytes.

Size

INC MOD1 {3.5Kbytes)

INC MOD2, USER1 {0.7Kbytes)

INC MOD3, USER2 {0.5Kbytes)

INC MOD4 (2K bytes)

INC MODb (2K bytes)

iINC MOD6, USER3 {1Kbyte)

INC MOD7 (2K bytes)

TLK U,M, 4K

Four segments are created by the linker, and are assumed to be disk resident. Because
an extended main memory is used, all segments will be main memory resident. The
composition of the segments is as mentioned in example b.

The system loader SYSLOD will discover the difference when a system with extended
main memory, secondary memory or a combination of both is used.

d. Systems with extended main memory (up to 256 bytes) and secondary memory.

Examples b) and ¢} may be combined.

233 Running linker

The CREDIT linker reads intermediate object modules from temporary object file and
from the library of the current user identifier. The syntax of the TLK command is:

TLK w [N{SIUH,X] [M] [,ni,mK]

N The system or user /@BJCT files do not need to be scanned.

23.3

May 1979

CREDIT REFERENCE MAM,

U Only the user /BB Fles witl g w
8§ iy the systers AOBIDT e a0 1o vo seannod,

Default vaius Both /GE
oy ,

1eq first, then the system /@BJCT

Tiie again.

DRV
e TrBians
‘3!};‘5,15..;1

X indige s reguirad,

b printeo.

soasiis 6F a iisting of the moduie names and the
o statistics par segment.

M The listing of th
relative stary :

AT S [D
Tl W ANAE IND L vt D D

mi The ragui

3

eTauit value:

2.3.3.1 OREDIT mindules o0 the systars b

When CREDIT modules pave
first a Generate Oblect Dirocinry
before the TLK comimang o
The following listings are produced by the CREDIT memaory management linker per
segment:

— Segment 0 {Common part}
load map
long branch table
call table
perform table can be excluded by riot using
literat pool ‘M in the TLK command.
key table pool
picture poo!
format poaot)

Linker statics tor this segment

— Segment n
loadrnap
long brancn tabie
perform table
literal poo!
picture pool
format pool

can be excluded by not using
M in the TLK command.

Linker statics for this segment

— Tot1al
segment map ’ can be excluded by not using

cross reference I "X’ in the TLK command.

Linker statics for the whole program.

234
May 1979

CREDIT REFERENCE MANUAL

The {oad map includes a list of error reports. Error reports will be listed even if the load
map listing has not been requested.

2.3.3.2 Load Map

The load map indicates the displacement of each module within a segment. It also
contains the linker (TLK) error reports. The format of the load map is shown in the
following example:

o - T e s M W S A Ml o o e A B G e M e G e " - o s T _ ¢

LOC MODULE ERROR COMMENT
00OCE MOD3 TRA 4.1 99~99-99 F1 0111l
00&D MODULY TRA 4.1 99-99-99 F1 0Llll
paeo MODULéS TRA 4.1 99-99-99 F1 0111l
0oBe? MODUL? TRA 4.1 99-99-99 F1 0LlLl
0oca MODULS TRA 4.1 99~99-99 F1 0111l
where: LOC is the displacement of the module within the segment.

MODULE is the module name.

ERROR is the error number followed by a type, number and clear text.

Error type may be:

E — User Error

| — Internal error or input inconsistency
W — Warning, no updating of error counter.
The following error reports may be printed:

ERROR ERROR Additional Text {Significance)
NUMBER TYPE Information

0 | END OF MEMORY
No more work space available
1 E SYMBOL TYPE CONFLICT
LB, CALL or PERF mixed up
2 l XXXX ILLEGAL INPUT

XXXX is a hexadecimal presentation of
1st and 3rd character in cluster. Input
from translator not expected.

3 | XXXX LOAD ADR INCORRECT
XXXX is a hexadecimal presentation of
load address from the ciuster.

4 W DDDD UNREFERENCED LITERAL
DDDD is a decimal presentation of the
number of unreferenced literals.

23.5
May 1979

CREDIT REFERENCE MANUAL

ERROR

NUMBER TYPE

5

10

1

12

13

14

15
16

17

ERROR Additional

Information
DDDD

DDDD

XXXX

DDDD

XXXX

miation of the number

cennot tound in the data

DODD s
of «inu
ex ermna :
MODULE LENGTH
X¥ XX is g hexade 3
difference between reguesied and available

WO space.,

TRANSLATION ERROR

DDDD is a decimal presentation of the number
of transtating errors.

WHONG TRANSLATOR BRELEASE

XXXX isa £ mal representation of the
lowest acceptalie ieval of the CREDIT translator,
in the form RY
RR = Release number

LL = Laevel numuger

ADDRESS TARLE OVERFLOW

C is a character representing the address type L
(Long dranch;, € {Call) or P (Perform).
LITERAL DISPLACEMENT OVERFLOW

C is a character represanting the titeral type

L (Literai}, K {key table}, P {picture), or

F {format)},

TOO MANY LITERALS

C is a character representing the literal type

L (literal}, K {key table), P {picture), or

F {format).

FORMAT LENGTH ERRCR

MULTI DEF ENTRY

Entry name defined in more than one module.
NOD TY¥PH ERRCR

C is a character representing the NOD type.
NQD type not C, D or R,

255

May 1974

CREDIT REFERENCE MANUAL

ERROR ERROR Additional Text (Significance)
NUMBER TYPE fnformation
18 E XXXX MODULE LONGER THAN SEGMENT SIZE
XXXX is a hexadecimal representation of the
module length, increase segment size.

19 | IDENT MISSING

20 E ADDRESSING MODE CONFLICT
One byte or two bytes addressing mode of
literals mixed up.

21 E NOD SEQUENCE ERROR

The NON record “NOD C’’ does not appear in
the beginning of the object input.

2.3.3.3 Call table

This table contains all references to external routines {CALL instruction) which could
not be satisfied by the TLK command. Each time a reference is encountered in the inter-
mediate code, the linkage editor {LKE command], replaces it by an "index value which
points to the called address in the call table. During execution of the application program,
the interpreter refers to the call table for actual destination addresses. The format of the
call table is shown in the following example:

o o e W o " - Y - o ot o Vo M T i T T . - Y . . 02

LocC DATA IX §5YMBOL DEFINED
0002 **xx 0k T:A581

GO0Y *#x=x 02 T:Kl

0006 *%xx 03 T:EDWR

0008 xx» 04 T:DSC1

000A »xxx=» D5 T:NKI

000C *xx» 06 T:RREA

Q00E #*xx 07 T:RWRL

2.3.7

May 1979

CREDIT REFERFNCE MANU/ 44,

where: LOC

vy osEgment zZerc.

DATA segment zero. |t
oretore net

IX _ mExioon indes g XFFRY)

SYMBOL ix:

DEFINED irer . ot oy
2334 ifongh

In order to reduce the amount o - ors s regi vl or a long branen instruction, linker
{TLK)} generates 3 ranie of de : i branchs is encountered
in the intermediate code, s: {i.2. seqiment number
and the address to be brans
The three hyte destination ad
byte “index value” which p
During execution of the app
table for actual destination adc
the following exampie:

ciion is replaced by a one
the iong branch table,
refars 1o the long branch

CREDIT CODE LINKER PRR 4.3 790ull + LB TABLE GEGMENT 01

LOC DATA 11X SYMEOL HEFINED
0170 0l 0OC7A 01 MOLULE
0174 01 005y gz MODULSE
01?8 0L 01iB 03 MOUULS
0L?C 01 009D Oy MODULE
0180 01 0OFa 05 MODULS
0184 D) 0DE3 06 MODULS
0188 01 0OCO a MOnULS
DLAC 0L OLOF 08 Mehulls
where: LOC is the displacement of each table entry within the segment.
DATA is the destination addres of the long branch. The first two digits

specify the seament number and the next four specify the displace-
ment within this segment. Tre difference between the four digit
hexadecimal value, and the relevant module start address shown in
the load map, gives the address of the destination within that module.

Mav 1979

154 i the long branch instructions. it
! ndax s XFFT.
YRGB s u;m it enm‘se. of the first instruction (iccation

= {8 in the module containing the destination of the

brancit
GEFINED s ine rame of the module containing the destination.

CREDIT subroutine which is called (PERF

by an “index value™ which paints to the subroutine
address in the nerform tabie The format of the perform table is shown in the following
example

- € e e s s s e mm i ren e e e e Tae r S e s R e o oun e - e e i Ay an b Y et oo i A i o

® CREDIT COul Lissis FRR <.} 793430 = PERF ORS"? Tr’-‘eBLE SEGHMENT 0%

LoC DRTA X SYMBOL DEFINED
£k%2 0 2037 a Upul, MODL
BL76 XX KxXX o KE3

04198 XX XXX e vbuv

NL?E 0L 0C5E 0 MODULS
0LAZ XX XXXX 3

PO,
-

0xR6 0L TR2A0
0LRA XX XAXX
JLAE XX XXXX
0uB2 DL 0044

OO ed I L a0
o2
Loy
13

R o'l o]
PG LT L B

z
W
Lo
'y

TNt curmher ‘M hn nax* FouA specify the dis-
: f.uss Sf;:gmam. Thg difference between the
: N the relevart module start
325 of the destination

adm ap gmns tha add

CREDIT REFERENCE MANLAL

« ot one (maximum index is X'FF).
.t anby appears when the sub-
cdute as the perform instruction.
B loh containg the subroutine.

ix i5 the index vear

SYMBOL i3then
roUting is n

DEFINED s the nama o

22346 Literal posi

his segment. Each time a Hteral is

by oan vatua™ which goints
reral pou! is showre in the following

Tre irers? o0 containg
encountered in tha
1o the diteral i 8

examie:

Y kW M AW TR i e GG SN Gmh o R eT e L@ G B0 L ARk S Sl G S B e AED e TR o sTh L WA W Tae W AT DM MRS ek e cam ks e KD HeS WD LN e e L 0 e e kS ek Came e e o e

* CRE?}IT u(}vl— ﬁ * LiTCR%L POOL SEGHENT (VS

Ix TYPE LS BaTa

1o OIN pgpa oGoo

3k BIN qops OROY

Le BIN CO0C 0008

13 BIN 00bE DOGS

Iy BIN OOEC Q009

55 BIN goEZ 0G0Lé

kb BIN GOEY 0032

U BIN 00ESs QO%0

13 Bin GOES D042

19 BIN g0Ea 0204

1A BINM COEC Q430

1B BIN OOEE LY4L0

LC 5TR GOFC o7

b STR O0Fy 20z

LE STR aaf3 2030

INg 5TR 0OFSs 2033107
eh 8TR J0F8 UQhul4ple
2l 3TR DOFC Hh4ivZiae
22 S5TR ULEO 4b4L43LE
23 5TR 0LO4% 4R4LYYLE
24 5TR 038 HLULuSLE

where: X is the index value. It staris at 10 or 4100 {maximum index is
XEE or X'4FFF),
TYPE indicates the value type of ths titeral. The following mnemonics
are used:
BIN for vaive typas X and W,
BCE tor value tyne 1
STR for value t\/pt C
LOC is the displacement of each literal within the segment.
DATA is the hexacecimazl repireseniation of the literal.

CREDIT REFERENCE MANUAL

2.3.3.7 Picture pool

The picture pool contains all picture strings used in this segment. Each time a reference
to a picture string is encountered in the intermediate code, it is replaced by an “index
value” which points to the picture string in the pool. The format of the picture pool is
shown in the following example:

e - —— Tt ——— - —————— - —— T e f L o - s o - —

IX TYPE
10 PIC
1L PIC
12 PIC
13 PIC
where: {X
TYPE
LOC
DATA

LoC

01LDL
0104
BLDF
0LEB

DATA

393939
5A5A5AREAEA5AR5A392C37939
3937452D3937452D39393939
S5A5A545A5A5A565A5A392C393928

is the index value. it starts at 10 or 5100 {maximum index

is X‘FF'" or X'5FFF’).

indicates the entry is a picture string (PIC),

is the displacement of each picture string within the segment.
is the hexadecimal representation of the picture string.

2.3.3.8 Keytable pool

The keytable pool contains all keytables used in the application program and is lacated
in segment zero. Each time a reference to a keytable is encountered in the intermediate
code, it is replaced by an “index value” which points to the keytable in the pool. The
format of the keytable pool is shown in the following example:

IX TYPE

10 KEY

LoC

0010

DATA

031E1DLY?

23.11
May 1979

e . -

- _..._.._.4.._..._.._....___."....._.-..._.._._.—.-—..-—-—g—.—.___-.._._.._._..._.

CREDIT REFERENCE MANUAL

where: 1X is the Index va starts at 10 or 6 100 {maximum index
is 3 CF gl
TYPE indicais the ooty kf\:t’ab'e {KEY)
LOC is the dnsplacnment of the keytabie within segment zero.
DATA is the hexadecimal representation of the keytable. First

character in the keytable is the length indicator.
2.3.3.9 Format pool

The format pool contains all format lists used in the segment.

Each time a reference to a format list is encounterad in the intermediate code, it is
replaced by an “index value’ which points to the format list in the pool. The format
of the format pool is shown in the following example:

X TYPE Loc DATA

10 FuT 0LF9 ClLBCO2?
1l FMT QLFD CLLBCO026
12 FHT 0201 CllBCO2S
13 FHT 0205 C1181322
24 FnT 0209 CLLCC30F4L5554Y484F S24954592E2E2ECEREIATERNC3DT 4541544534
15 FnT 0225 CLLC9420C3192A2ASYSZYLYESIYLHISHNIYF YEZOH3YLYES3H54CHCHEHHCACAESCILCABEA
14 Fny 02YE CLLCAB2AEBCLLCC3LFUSHEHYROUF 46204441592C53Y4552564543558094%F 53435F HE544F
EACLLCABZA
1? FnY 0280 CLLCC30FS452Y4L4E534L4354Y49Y4F YERECERE3ALORLOEROC3054%%155953AL220EACLLCCT
YF 5220434F Y4453RC02ATEEDCIODYF 46464 T 434 5204EHF 3A3L3E35E8CLLCC3059E9 44D Y5
524553533ACO24EACLLICITEY34954593AC0278920C30B5LY3434F 554E552D4EYF 3ACOET
YE543ALL229020C30CHENS5720424L4CYL4EY3453R1123
where: I X is the index value. It starts at 10 or 7100 {maximum index
is X'FF' or X'7FFF’).
TYPE indicates that the entry is a format list (FMT) or format table
FTB). The layout of FMT entries is explained below.
LOC is the displacement of each format list in the pool within the
segment.
DATA is the hexadecimal representation of the format list or format
table.

Each word in an FMT entry has the foilowing layout:
bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P A
T ———]

T2 0

Depending on the T1 and T2 bit, fields P and A or 0 and A have the following
meaning:

T1=0; P field contains an index to a picture string (FMEL).
A field refers to decimal-data-item

23.12
May 1979

4= m

{ES5545UYEBCLICAB2A

LCC30EYF 5045524154
3AC0258620C3074L44
€8CLLCC3074LUDUFES

CREDIT REFERENCE MANUAL

T1=1; Ofield contains a six-bit value, indicating how many times the character
in the A-field has to be copied. (FILLR).

Ti1=1,T2=1;
Contents O-field
00/01

03

04
08

09
0A
0B

10

11

12

14

15

16

18
1A

1B

1C
1D
1F
20
21

28
29

Significance

A-field contains a reference to a string-data-item or literal
(FCOPY).

A-field and following bytes contain 1SO-7 chararters
(FTEXT).

A-field contains a tabulation value. (FTAB).

Character X' 1F’ edited into the buffer. A-field not used
(FHIGH).

Character X"1E’ edited into the buffer. A-field not used
(FLOW).

Character X'12’ edited into the buffer. A-field not used
(FUL).

Character X' 13’ edited into the buffer. A-field not used
(FNUL).

A-field contains a reference to a binary or decimal-data-
item. The byte following the A-field contains a displace-
ment. (FBZ).

A-field contains a reference to a binary or decimal-data-
item. The byte following the A-field contains a displace-
ment. {FBP).

A-field contains a reference to a binary or decimal-data-
item. The byte following the A-field contains a displace-
ment (FBN).

A-field contains a reference to a binary or decimal-data-
item. The byte following the A-field contains a displace-
ment (FBNZ).

A-field contains a reference to a binary or decimal-data-
item. The byte following the A-field contains a displace-
ment (FBNP).

A-fieid contains a reference to a binary or decimal-data-
item. The byte following the A-field contains a displace-
ment (FBNN)

A-field contains a displacement (FB).

A-field contains a reference to a boolean-data-item. The
byte following the A-field contains a displacement (FBF).
A-field contains a reference to a boolean-data-item. The
byte following the A-field contains a displacement (FBT).
A-field contains a reference to a binary-data-item, {FCW).
A-field contains a reference to a literal (FCW).

A-field contains a reference to a subformat list (FLINK).
A-field not used (FSL).

A-field not used (FNL).

A-field not used (FEOR).

A-field not used (FEXIT).

23.13
May 1979

CREDIT REFERENCE MANUAL

2C
2E

2F

30

A-field contains the tabulation position (FINP),

A-field contains the tabulation position, the following

byte contains the right halfword of the application (APPL)

control field {FINP).

A-field contains the tabulation position, the following 2

bytes contain in sequence:

a) left halfword of the application (APPL) control field

b) right halfword of the application {APPL) control field
(FINP).

A-field contains the tabulation position. The three following

bytes constitute the standard input control field (FKI).

Layout standard control field (FKI).

Loftf2]

ME

ALPHA

32

33

38

3A

\J
MINL

AE 71o]1]2]slals]s6]7
Ly v
NEOI MAXL REWRT NOT
USED
NCLR
SCHK
v
CTAB
v
VERIF

A-field contains the tabulation position. The following
byte contains the right halfword of the application {APPL)
control field.

The next three bytes are the standard control field bytes
(see also 30) (FKI).

A-field contains the tabulation position. The following

bytes contain in sequence:

a) left halfword of the application (APPL) control field

b} right halfword of the application (APPL) control field

c), d) and e) are the standard contro! field bytes (see also 30)
(FKI).

A-field contains the tabulation position. The following

bytes contain in sequence :

a) duplication data-item (DUPL) reference.

b), ¢) and d) are the standard control field bytes (see also
30) (FK).

A-field contains the tabulation position. The following

bytes contain in sequence:

a) right halfword of the application (APPL) control field

b) duplication data-item (DUPL) reference

¢), d) and e) are the standard control field bytes (see also 30)
(FK1Y,

23.14 -
May 1979

CREDIT REFERENCE MANUAL

3B A-field contains the tabulation position the following
bytes contain in sequence:
a) left halfword of the application (APPL) control field
b) right halfword of the application (APPL) control field
¢} duplication data-item (DUPL) reference
d}, e} and f} are the standard control field bytes (see also 30)
(FKH).

2.3.3.10 Linker statistics per segment

The format of the linker statistics listing per segment, is shown in the following
exarnple. The contents of the listing are self-explanatory.

» CREDIT COCE UINWER PRR 4.1 790410 » LINKER STATISTICS SEGMENT 0O

ALL VALUES DETIMAL

LB ThBLE: J BYTES. 0 ENTRIES

CALL TABLE: 14 BYTES, ? ENTRIES

PERFORM TABLE: 0 BYTES. 0 ENTRIES

LITERAL DESCRIFTOR TABLE: 0 BYTES. 0 ENTRIES

PICTURE DESCRIPTOR TABLE: 0 BYTES, 0 ENTRIES

KEYTABLE DESCRIPTOR TABLE: 4 BYTES, 1 ENTRIES

FORMAT DESCRIPTOR TABLE: J BYTES, 0 ENTRIES
LITERAL POOL SI1ZE: 0 BYTES
PICTURE POOL SIZE: 0 BYTES
KEYTABLE PQOL SIZE: 4 BYTES
FORMAT POOL SIZE: B BYTES
INTERPRETABLE COQDE SIZE: 0 BYTES
PROGRAM LENGTH: 40 BYTES

NUMBER OF ERRORS 9]

2.3.3.11 Segment map

This map gives a listing of the number of segments, the number of modules contained in
a segment and the number of bytes per segment. The format of the segment map is shown
in the fellowing exampie:

CREDIT CODE LINKER PRR 4.1 790410 = SEGMENT MAP

SEGEMENT NUMBEHR 0 F
NUMBER TYPE LENGTH USAGE MODULES ERRORS
0a C ya D O
0L D LY 7L % Y]
where: NUMBER is the segment number.

TYPE indicates:
C= common part (segment zaro)

M = main memory resident
w= disk resident

2.3.15
May 1979

CREDIT REFERENCE MANUAL

LENGTH

USAGE

MODULES
ERRORS

2.3.3.12 Address cross reference listing

number of bytes contained in this segment {program length).

a filling percentage of the segment, related to the size option in
the TLK command.

number of modules contained in the segment.

number of errors per segment.

This listing provides a cross reference between statement/subroutine identifiers in the

procedure division and the modules/segments in which they are referenced. The format

of the address cross reference listing is shown in the following example:

S5YMBOL

DISC
GO
6TPL
6TP2
cTP3
KB
NBa2
T:ASS1
T:DSCL

TIEDWR

TYPE VALUE

02
S 01
01
01
01
02
0l

(g} [aXsla-da-]

[s21
a2
02
o2

VUV TVTOOOO

0090
000K
0030
gaué
0gu4c
000E
pos2

0037
Q060
00B?9
0oca

where: SYMBOL

TYPE

VALUE

SEG-DEFINED REFERENCES

02-MODULS DL-MAIN (L)

0L-MAIN 02-MODULS (1) gz2-mMobuL? (1) 02-MoDULS (1)

0l-M0D2 B1-MAiN (1)

0L-M002 01-MAIN (1)

0i-Mod2

02-M003 01-MAIN (1)

BL-MODULS 0L-MAIN (1)
0L-MAIN (1)
0L-MODULS (8) 02-mMoD3 (4) 02-MODULY (3)
02-1M0DUL? (1)
01-M001 (1) 01-mMoD2 (3 DL-MODULS (4)
02-ModuULY (1) 02-MODULS 1)) g2-mModuL? ()
0L-MARIN () 01-MODULS (3} 02-1003 (2)

8L-MODULS (2)
0L-MODULS (1)
02-MODULSE (1)

01-M0DY 01-MAIN (1
02-MODULY 0L-MAIN ()
g2-MopuL? 0L-MAIN (11
gz-nobuLa 01-MAIN (1)

is the statement/subroutine identifier in the procedure division.
indicates type of instruction in which “symbol”’ is used.

C = CALL

P = Perform

B = Branch

S = Start point.

displacement of “‘symbol’’ in the referenced segment. The first
two digits specify the segment number and the next four specify
the displacement within this segment.

i

I

2.3.16
May 1979

02-ModULS (1)

02-M0D3 (1)
02-MoDULS (1)

CREDIT REFERENCE MANUA L

SEG-DEFINED segment number and module name which contains “symbol”’.

REFERENCES are the seyment numbers and module names, containing
references to “symbol’’, The number of references in each
module appears in brackets after the module name.

2.3.3.13 Linker stausiics total

The format of the linker statistics total is shown in the following example. The contents
of the listing are self-explanatory.

ALL VALUES DECIMAL

INTERPRETABLE CODE BIZE: 547 BYTES
PROGRAM LENGTH: 1568 BYTES

AVAILABLE WORKSPACE: 723874 BYTES
USED WORKSPACE: 2934 BYTES, 2 %
UNUSBED WORKSPACE: 20940 BYTES
MAX WORKSPACE PER MODULE: 37?0 BYTES
NUMBER OF ERRORS 0

PROG ELAPSED TIME: OOH-02M-015-520MS-

2317
May 1979

