CREDIT REFEAENCE MANUAL

14 Procedure Division
i.4.1 introduction

The procedure division contains the instructions which direct the input, processing
and output of data. It also contains some declarations which must be used in
conjuniction with cercain instructions. The use of directives in the procedure division
is discussed in Section 1.2. The general layout of the procedure division is shown
below.,

Tne ENTRY and EXT directives {if present) must be the first statements in the proce-
dure division. Either ENTRY or EXT may be written first. The EQU directive may
occur anywhere in the procedure division, after the ENTRY and EXT directives. The
procedure division continues with the remaining instructions and declarations written
in a sequence dictated by the programmer.

Subroutines (enclosed in PROC and PEND directives} may appear anywhere in the
remainider of the procedure division. |t is often desirable to make the whole of one
module a subroutine. This is achieved simply by making the PROC directive the first
statement after the ENTRY/EXT/EQU cluster and by making the PEND directive
the last statement before the END directive,

[ENTRY eic! — Entry point directive(s)
[EXT etc] — External reference directivels)
[EQU etc] — Equate directive(s)

Instructions/Declarations in any sequence

F_F’ROC — Subroutine start directive

Instructions/Declarations in any sequence

l_I?END — Subroutine end directive

1.4.2 Instructions
1421 General

The general format of an instruction is:
[staternentidentifier] _ instruction-mnemonic i [operand] [,operand]

The “instruction-mnemonic’’ specifies the basic operation to be performed by the
instrucfion, This mnemonic may be foliowed by one or more “‘operands’’, These
operands have a difterent significance for each instruction. The operands of a
particular instructiun ste often referred to as operand-1 | operand-2 etc. The leftmost
aperanc o an structian is counted as one,

41
May 1979

CREDIT REFERENCE MANUAL

1.4.2.2 Arithmetic Instructions
These instructions are:

Mnemonics Significance
ADD Add
CMP Compare
DIv Divide
DVR Divide rounded
MOVE Move {conversions)
MUL Multiply
SUB Subtract

With the exception of MOVE all arithmetic instructions must operate on data items of
the same type. That is, the operands must both be binary, decimal or string.

The MOVE and CMP instructions may operate on binary, decimal or string data items.
The remaining arithmetic instructions operate on binary or decimal data itemr only.

The format of an arithmetic instruction consists of an operation code foliowed by two
operands.

1.4.2.3 Branch Instructions
These instructions are:

Mnemcnics Significance
CB Compare and branch
B Indexed branch
LB t.ong branch
SB Short branch {within 258 bytes)
TB Test and branch (Boolean data-items}

All branch instructions, except 1B, contain a condition mask. This is an integer ranging
from O to 7 inclusive. If the condition mask corresponds with the contents of the condition
register the branch instruction is obeyed. Otherwise the instruction following the branch

is executed.

In some branch instructions the condition mask is inciuded in the mnemonic as e.g.

branch on equal {BE), branch on OK (BOK} or branch on error {BERR). The transiator
will decide if this is going to be a short branch or tang hranch,

Mnemonics Significance
B Branch
BBEQD Branch on begin/end device
BE Branch on equal
BEOF Branch on end of file
BERR Branch on error
BG Branch on greater
BL Branch on less
BN Branch on negative
BNE Branch on not equal

|
1.4.2

May 1979

CREDIT REFERENCE MANUAL

Mnemonics Significance
BNEOF Branch on no end of file
BNERRA Branch on no error
BNG Branch on not greater
BMNL Branch on not less
BNN Branch on not negative
BNOK Branch on not OK
BNP Branch on not positive
BNZ Branch on not zero
BOFL Branch on cverflow
BOK Branch on OK
BP Branch on positive
BZ Branch on zero
CBE Compare and branch on equal
CBG Compare and branch on greater
CBL Compare and branch on less
CBNE Compare and branch on not equal
CBNG Compare and branch an not greater
CBNL Compare and branch on not less
TBF Test and branch on false
BT Test and branch on true

The condition register is a two bit register which is automatically set during the execution
of certain instructions. it may contain an abbreviated status code, the previous value of a
boolean data item or the result of a compare instruction. The condition register is used by
the following instructions:

Contents of condition register: Instructions which set the condition register:

Abbreviated status code ADD, INSRT, MATCH, SUB, USE, MUL, DIV,
BVR and all 1/Q instructions

Previous value Ail logical instructions

Result of comparison CMP, CB, TB and TEST

The CB and TB insiructions are the only branch instructions which actually set the
condition register,

The function of branch instructions is to control the instruction execution sequence by
updating the program pointer (PP}. During the execution of a CREDIT program the
program painter holds the address of the next interpretive instruction to be executed.
The S8, CB and TB may branch forwards or backwards up to 255 bytes. The LB and IB
instructions may branch forwards ar backwards any number of bytes within addressable
memory.

In the virtual memaory system, each segment wil! contain a long branch table. Each
table may contain up to 255 entries,

1.4.2.4 Input/Output Instructions
These instructions are:
Mnemonics Significance
ABORT Abort |/O operation
ASSIGN Assign a data file
1.4.3

May 1579

CREDIT REFERENCE MANUAL

Mnemonics Significance
ABORT Abort /O operation
ASSIGN Assign a data file
DSCO Data set control zero
DSC1 Data set control one
DSC2 Data set control two
EDWRT Edit and write
{ASSIGN Assign an index file
HINS indexad insert
IREAD Indexed random read
IWRITE Indexed rewrite

Ki Keyboard input
MWAIT Multiple wait

NKI Numeric keyboard input
READ Read

RREAD Random read
RWRITE Random write
TESTIO Test completion 1/Q
WRITE Write

WALT Wait

XSTAT Extended status transfer

t/0 instructions operate upon data sets. These are referred to by using the data set
identifiers included in the DSET declarations.

Unless the “‘no wait” option is specified in an /0 instruction, execution of the task
will be suspended during each 1/0 operation and will not be re-started until the 1/0
operation is complete. The “no wait” option is specified by including .NW in the
I/OQ instruction.

This results in the 1/0 being started and the task being put directly into the dispatcher
queue. While |/0 is being performed, the task may gain control. When the task reaches
a stage at which further processing is impossible untii the /O is completed, it can
request that execution be suspended by executing the WAIT instruction.

Unless the “no echo’” option is specified in a keyboard input instruction (K1, NKI}, the
input data will be echoed on the associated echo device. The echo device associated with
each keyboard is specified when the TOSS Monitor is generated. |t may be a Visual
Display Unit, a Plasma Display Unit, a Numeric and Signal Display Unit or a General
Terminal Printer. The “no echo’ option is specified by including .NE in the instruction,

If the EDWRT instruction is used the associated DSET declaration must specify a buffer
length. This is because this instruction edits directly into a buffer specified by the CREDIT
Translator, The keyboard input instructions (K1, NKI) and the READ and WRITE
instructions use buffers specified by the CREDIT programmer in the appropriate work
blocks,

During the 1/0 operation a device dependent status code is generated {known as the
extended status code}. The TOSS Monitor then generates an abbreviated status code which
it places in the condition register. This status code summarises the conditions indicated by
the extended status code. The abbreviated status code is generated in the foliowing way.

1.4.4
May 1879

CREDIT REFERINCE stANUAL

The extended status code is compared with the mask X'E8DF’. i there are any coirespon-
ding bits set to "1" in barh words then the value 2 (error) is placed in the. concitian register.
H none of the *17 bits matehes then the extended status code is compared with the mask
X0420°, 1t any 17 bits match then the value 3 (begin or end of device) is >'1ced in the
condition registe: I there is still no match then the extended status register is compared
with the mask X'1000° If the ‘1’ bit matches then the value 1 (end of file} is placed in

the condition reaisrar,

Since the sum of ail the masks is "FCFF’, two bits are not checked. These may be

checked by the CREDIT programmer if necessary.

An extended status code may be obtained by the CREDIT program via the XSTAT
instructicn. The extended status code for each type of data set is described in
appendix 2.

Data set condrel (rawind of tape, grasp action of Teller Terminal, switching indicator
lights ete} is achicved by the data set control instructions (DSCQ, DSC1, DSC2).

1.4.25 [eogicsl tnstructions
These instruchions are-
Mnemionic Significance
: CLEAR Clear (Reset)
i INV invert
i SET Set
‘L TEST Test boolean

Logical instructions operate upon boolean data items. At the completion of a logical
instruction the condition register is set at the previous value of the boolean data item,

Each iogical instruction occupies two bytes of core. The first byte contains the operation
code and the second byte is a reference to the boolean data item.

1.4.2.6
These instructions are.

Schedufing lustructions

Mnornonic Sianificance
ACTV Activate an other task
EXIT Terminate a task

DELAY Delay task execution
GETID Get task identifier

FAUSE Inhibit a task

R3TRT Restart paused task

SWITCH

Switch control to another task

Scheduhing Insrrarians ere wsed 1o ant'vate or restart a task in a different terminal

class (ACTV. R

{70 ur 1o cawse o terminats the current task (PAUSE, EXIT).

Al aschedouno s o by the TOSS Monitor. The task identifier of each active task
i neian g o guede Thisis a "firstin first out” queue of tasks awaiting
exenulion. i reetily executzd Task cannot proceed, for any reason, the
TO55 Mooy nenrt ~untres 1o the next Lask in the dispatcher queue,

Mav 1879

CREDIT REFERENCE MANUAL

If an executing task performs an EXiT instruction, the TOSS Monitor will de-
activate the task. That is, execution wi’s be terminated and aill records of the vask

in the TOSS Monitor will be deleted. Such a task may be re-sctivated by a task

in the same or another terminal class whi=h pa-forms an ACTV instruction for the
de-activated task. The task will then be i=:.alised and reinsartsd in the dispat:her
queue.

I ar executing taslk performs a PAUSE mstruction, the TOSS Moniier will place the
task in a "'pending’’ state. That is, oxe P O% the task witl ooaze and its task identifier
will not be entered in the dispatcher quete, rowever, all reqgisters will be saved,
Such a task may be restarted by & Ja3k in the same or arothar terminal class which
performs a RSTRT instruction for the pending task, The 1asic will then be reinserted
in the dispatcher queue.

The difference between the PAUSE and £X7 instructions s that after a PAUSE the
task rernains active {and therefore cannot be activared by an AGTV instruction),
whereas after an EXIT instruction the tasi becomes inaciive,

1.4.2.7 Storage contro! instructic:
These instructions are:

Mnemonic Significance
USE Attach User of Swappable work block
UNUSE Detach User or Swappable work block

With the USE instruction a user work block or swappable work block can be attached
to the current task. A swappable work block will be ioaded into main memory, from
disc. Execution of the UNUSE instruction results in a detaching of a user work block
or swappable work block from the current task. The swappabie work block will be
rewritten on disk.

1.4.2.8 String Instructions
These instructions are:

Mnemonic Significance
COPY Copy

DLETE Delete

EDIT Edit buffer

EDSUB Edit substring

INSRT insert

MATCH Match

XCOPY Extended copy

The string instructions are used to manipulate string data items. The COPY and XCOPY
instructions may also be used with decimal data items.

String instructions occupy from three to seven bytes of core,

7146
May 1679

CREDIT REFERENCE MANUAL

1.4.2.9 Subroutine Coritrol Instructions

These instructions are:

Mnemonic Significance
CALL Call asseinbler subroutine
PERF Call CRED!T subrcutine
PERFI Indexed perform

RET Return from subroutine

They are used to transfer control to and from subroutines written in CBEDFT or
Assembier. PERF!, PERF anc RET may be used with CREDIT subroutines only.
CALL may be used with Assembler subroutines only,

1.4.2.10 Format controf 1/0 instructions
These instructions are shown in the table below?

instruction Minemonic Use

ATTFMT Attach a format list.

DETFMT Detach format list,

DISPLAY Display a format list on the screen.

CuPL Duplicate a data-item.

DYKI Input from the device, present in

the FMTCTL deciaration.

EDFLD Edit input field.

—— —— e,

ERASE Erase on the screen.

GETABX Get current input field number.

GETCTL Get control value (MINL, MAXL

etc.)

GETFLD Get tield makes input field current.
;-_Fﬁ_!“h_ﬁ“w o F;Eint format list on output device.
[N -

t SETCUR Pasition cursor at 1st character
l_ position of inpet field.
| THOME TEWD. TBWD, |

TRIGHT, T{EFT TUP : Tabulation
’ ToOwN TLDOWN !

E_TST‘CTL_ I Test control tag (ME, NEO! ete.).
rmmrm s i R e « it e o o e ——

LOuUPGE LD I Updare fiela.

iAd7
Mav 1579

CREDIT REFERENCE MANUAL

They operate on input fields and corresponding datz items defined 1na format ist
which is made current by the attach formatinstrection. Sume of these instruct ons
such as PRINT, DISPLAY, OYKI, EDFLD operste on -Jats sete which are defined as
input and output device in the format control 1/O declaratior (FMTCTL), in the data
division (see 1.3.9).

The tabulation functions THOME, TFwWD “8WD, TRIGHT. TLEFT, TUP, TDDWN
and TLDOWN serve for moving the cursor to the ditterens FIK-input fields of the
current format list.

Aadressing of the desired input field is always relative 1o the current input fieic An
exception is THOME, which will always tabulate o the first FKI-input field of the
current format list.

These tabulation functions require :t ieast gne FK-irput field to be present in the
current format list.

1.4.3 Declarations

1.4.3.1 Format lists

A FRMT declaration followed by a selection of the remaining farmat list declarations
and ending in a FMEND declaration is known as a format list. Two possibilities sre
available when using the format lists.

a) The first possibility is that lines and keyed in data are dispiayed or printed
by using the instructions EDWRT, EDIT and WRITE.

In a format list is specified in which way an {/Q buffer has to be edited.
Format list declarations which may be used are:

Mnemonics N
FB, FBN, FBNN, Format oranch on condition
FBNP, FBNZ, FBP,
FBF, FBT, FBZ
FCOPY Format copy
FCw Format control word
FEQOR Format end of record
FILLR Fill repeat
FLINK l Format link
FMEL o Fo'rmat element according picture
FMELI string
FMEND Format end
FNL Format new line
FRMT ‘Format start
FSL miu'-:)rmat start line
FTAB Format tabulation
FTEXT Format immediate text
1.4.8

May 1978

CREDIT REFEREMCE MANUAL

An example of a format list is shown helow:

ldentifier Declaration Explanation
FORM1 FRMT Begin format list FORM1.
FILLR w ‘uw’ .2 Spaces are inserted in columns

1 and 2 of the buter,

FCOPY Ll = C'TERMINAL' The characters TERMINAL are
inserted in columns 3 to 10 of

the buffer,
FMEL w 99’ The contents of data item TER:
TERM are edited into the buffer according

to the picture 99,

FLINK u SUBF1 The contents of format list SUBF1 are used
as if they were part of this format list, Editing
starts at the current position in the buffer,

FMEND End format list FORM1.

The above format list when used in an EDIT or EDWRT instruction would
resuit in a buffer containing the following:

o TERMINALNN ete
where NN is the value from the data item TERM.

A pointer is maintained during the editing process which points to the buffer
column into which edited data is currently being written. In the above example
this pointer would have had an initial value of 1. After the FILLR declaration it
would have had a value of 3. After the FMEL declaration it would have had a
value of 11 and so on. If necessary, this pointer can be moved backwards or
forwards through the buffer hy the FTARB declaration.

As shown in the above example the FLINK declaration may be used to nest
format lists and thus avoid rewriting the same sequence of deciarations a
number of times.

b) The second possibiiiey (s for one format list to describe a whale transaction
layout on the screen and data which is being keyed in to be displayed on the
current input field. A current input field always uses a data-item to contain
the data dispiaved. 1t is now possible to display all the prompts on the screen
{Background! with one instruction. These format lists may also be used by
screen management (see appendix 7). With format control /O instructions
it is possibie tor keyed-in data to be displayed on the corresponding input
field on the screen. Also data received from a disk or via a data communication
line can be displayed on the desired input field on the screen,

P49
May 19759

CREDIT REFERENCE MANUAL

NAME: input field 1

STREET: input field 2
(O bl

TOWN: input field 3

input field 4
e}

————— ~— x
PROMPTS input fields
{Background) {Foreground)

Each input field is described, with its options, in the format list by the format
list declarations format input (FINP) and format keyboard input (FKI}.

As different transactions have a different layout on the screen or on the

print device, each transaction can be defined complete in a format list.

Only one format list (transaction) can be current for one task. A format

list is made “"current’” by the Attach Format instruction (ATTFMT). Initially,
after an attach format, none of the input fields is current. When a format list
{transaction) is attached, it is possible 1o make one of the input fields

current for receiving data. Only one input field may be current at a time.

An input field can be made current by using ene of the format control
instructions such as get field (GETFLD} and the tabulation instructions
THOME, TFWD, TBWD, TRIGHT, TLEFT, TUP, TDOWN and TLDOWN.

Two types of input fields are defined:

— an input field which is used to receive data from a device {except keyboard)
or data item (Messagesi. The input field is described by the FINP declaration
in the format list.

— an input field which is supposed to receive data from a keyboard.

The input field is described by the FK| declaration in the format

list.
These input field declarations must be foliowed directly by a FMEL or FCOPY
format list declaration.
FMEL and FCOPY refer to decimal and string data items respectively in which
the data for the input field is stored.

All input fields are referenced in the sequence as they appear in the format list,

_
FRMT
FKI (1) NAME: L])
FKE ..., (2) STREET: 2 .
FINP (3)

CODE: L3
FKI (4)
[FMEND TOWN: L4 .

1.4.10

May 1978

CREDIT REFERENCE MANUAL

The numbering of the input fields as shown above can be selected by the

user in the format control instructions e.g. GETFLD when control value 2

is specified.)

To select the field sequence numbering of only FKi-fields or onry FINP-fields
‘the user has to specify the GETFLD instruction control value as zero for
FKl-input fieids and one for FINP-input fields.

Sequence numbering of FKl-input fields only:

[FRMT

F@f ()

Fﬁn (2) NAME:] .
FINP ..., STREET: . 2 ,
FKI ... (3) CODE: ,
[FMEND TOwWN: .3 .

Sequence numbering for FINP-input fields only:

[FRMT
FKI ... :
: NAME: .) i
FKI (1)
STREET: L 1 '
FINP |
CODE: ! .
FMEND
- ;_TOWN: . . X

With the PRINT instruction a hard copy is produced on the printer
{TTP or GTP) from the current format list.

When using format control 1/0 instructions, some rules have to be followed
for using the format list.

1. The first line on the output medium must be defined in the format
list by the FSL format list declaration and subsequent lines by the
FNL format list declaration.

2. Data items containing variables for conditional editing in the format
branch on condition declarations (FBP, FBZ etc.), may not be
altered while the concerned format list is current.

3. A format list must contain at least one input field (FKI or FINP
field).

However, the tabulation functions THOME, FFWD, TBWD, TRIGHT,
TLEFT, TUP, TDOWN and TLDOWN require at least one FKI-field.

1.4.11
May 1979

CREDIT REFERENCE MANUAL

1.4.3.2

4. The format tist declarations FOV and FEQR may only be present
when imimediatery sucoeedzd by & PS50 or FNL format list
declaration.

5. Formal parameters are r. 1 ailowed in jonmat lists which are using
the format controt 10 mslvuctions,

L e owinan 1ata must be entered, These
fields are defined in ths Fri-u ronion ot the Most Enter (ME) bit set.
When no data is entersd iospoi an ing ‘eid Ot can resutt in a condition
register se*ting for the next axecutod smstruction with indication
"compuisory input fiei”

Compulsory input fields, iie fiu

Data is not directly gntered o the dota-tom, suilowing the FK-input

field description. The DY Klinstruciion vl resd gata fromy the input device,
defined in the FMTLTL declaration, and stare in its own buffer. The data is
echoed on the gcho device, but not edited. To aet the data in an edited format
on the output device {c.g. screent it has to bhe moved to the data-itern of the
current input field.

The UPDF LD instruction moves the contents of the input buffer (DYKI) to
the data-item of the curvent input field and redisplays with editing, if so
required.

When the name of the data-item ot the current input tield is unknown, a
reserved name, | FMTITEM, iz useg to acsess this data-item. In this way data
may be moved from the input buffer iDYKi; i¢ the data item of the current
input field.

Example: MOVE [_.: FMTITEM, SPINPUT

(SPINPUT is the buffer present in the DY K1 instruction). The other way
round is also allowed, e.g. MOVE 1 FIELD, :FMTITEM.

EDFLD instruction also uses its own butier to update and echo it. Buffer
handling is similar to the DYK{ instruction.

To display the contents of the input iieids belonging to data items, the
DISPLAY instruction is used, which does not update the data items,

With the DUPL instruction, the contents of the data item mentioned in
the DUPL option of the FKl-input field description, is moved to the data
item mentioned in the DUPL instruction. When this data item happens to
be a data-item of a current input field, it is not directiy displayed, but must
be displayed with the DISPLAY instruction.

Key Table Declars:ion

This declaration is KTAB. It is used to define & list of keyhoard input termination
characters, These characters are used 1o detect an end of message during a keyboard input

- operation. KTARB is used in conjunction with {ne keyboerd input instructions KI, NKI
and DYKI.

id12
A 1074

CREZT BE TS ENCE MANUAL

1.4.3.3 Paramefer ec ration

This deciaration s #LIST, it is used to specify parameters to be passed to a subroutine
when it is called withy the FERFI instruction. 11 is recommended, not to use tn2 CON
directive since this directive does not support passing parameters (e.qg. literal constants,
format iists, rey tabiesi in virtual systems or when ADRMOD=2, A PLIST dircciive may
oniy be uses followi~e ¢ PERFL tinstruction.

1.4.4 Subraistine nhanalting

14.4.% UREDIT subioutines

CREDIT subvoutimes start with a PRGC directive which may be followed by up to eight
formal parameters. This number depends on the addressing mode. When ADRMOD=2,
Two byte adriressing moda, maximum 8 format parameters are allowed. (See OPTNS
directivel When ADRMOD =1, one byte addressing mode, maximum 8 bytes are availr-le
for formai parar

-ters. in this case the maximum number of formal parameters depe. .
on the value 0 LiTADR. When LITADR=1111, maximum 8 formal parameters are
allowed. When & formal parameter is using 2 byte addressing, selected with the LITADR
option, this parameter wili use 2 hytes of the maximum avaitable B bytes and decreases
the number of formal parameters allowed,

Tha number of actual cerameters passed to the subroutine must be the same as the
number of formal gararmeters in the PROC directive, Actual and formal parameters are
used to pass varabies to a suproutine and to store results generated by the subroutine.
The variables are specified s¢ actual parameters in a PERF instruction or PLIST directive.
The format ot each variabie is described in a forma! parameter in the PROC directive

of the subroutine being called. Actual parameters are operated upon within the sub-
routine repiacing the corresponding positional formal parameters in the instruction
operands. The following list shows the types of data that can be specified as actual
parameters and shows tne corresponding types of formal parameter which must appes:
inn the PROC directive.

Actual parameter Formal parameter
array-identifier identifier {)
[index-identifier-1; lidentifier]
[index-dentifier 2; lidentifier]
data-set-identifier identifier
format-list-identifier identifierl$identifier
format-tabie-idenufier identifier {)1$identifier {)
key-table-identitier identifier|Sidentifier
literal constant identifier!Sidentifier

Whar for at least one of the formal narameters two byte addressing is used, the PROC
directive rmust be {ellowed by PFRMT, PKTAB or PLIT directive, even when the other
wrs are a0t usieg twe Byie addressing. PFRMT must always be used when a for-
mat apte name s 0assed as parameter.

param,

ACE sion as Tivst sy b o the tormal parameter mdicates a parameter type literal
conslar s, kayviabile o formatlist. Whnen one of these parameter types is in the heading
of the sabe wovachiou o Foagn as first symbol, the type must be specified by using

the Pl P TAR o FRERMT directive, alss in one byte addressing mode.

7473
Maw 1379

CREDIT REFERENCE MANUAL

Example:
OPTNS LITADR = 1111
5UB1 PROC FORMIT, LITC, KTB1, DAT!
PKTAB KTB1
PFEMT FORM1
PLIT LITC
PEND
SUB2 PROC FTagl : !
PFRMT FTABL
As actual parameters may he passed.
— keytables
— format lists

— format tables

— literal constant {except type "X’
~— single data items

— one or two dimensional arrays

— data sets

When a PERF or PERFI instruction is executed the program pointer is adjusted to point
to the instruction following the PERF/PERF! and is then saved on a stack. The program
pointer is set to the first instruction of the subroutine.

When a RET instruction is executed the saved program pointer is restored and execution
is continued at the instruction following the PERT or PERFI.

1.4.4.2 Assembler Subroutines

Assembler subroutines are called by the CALL instruction, [t is the responsibility of the
Assembler program to ensure that the program pointer is correctly stepped past any actual
parameters before control is handed back to the CREDIT module. The program pointer

is held in register A12. In virtual systems it is not possible to transfer parameters to
assembler subroutines, except when the parameter list is picked up by the assembler
routine before executing the first 1/O instruction.

A number of Assembler routines are available to assist the Assembler programmer in
obtaining parameter values, updating the program pointer and returning to the CREDIT
module. They are 1:EVAD, LEVAIT, LEVA3; [:EVADB, I:EVA7Z; 1:RT1and T:FDSP,

Routine I;EVAQ is used to obtain the address of a data-item, array data-item
or formal parameter

Routine I'EVAT is used to obtain the address of a literal parameter or formal
parameter

Routine I:1EVA3 is used to obtain the address of a picture string or formal
parameter

Routine I:EVAS is used to abtain the address ot a format list parameter or formal
parameter

Routine [:EVAT is used to oblain the address of a key table parameter or forrnal
parameter

1.4.14
May 1879

CREGIT KATLEF v v AR AL

Loy routines are:
£ rat.cter of literal tyae in the right byte in bits 10 and 11,
O odicatss string, 2 indicatas binary and 3 indicates decimal.

The return vdiues
Ragister H.

Ab - Gontmns the data or literal end address.
AS — Contans the data item or literal start address.

The difference berwec 85 and A9 s the length of the data item, literal, picture
string or fr}"rnar Bt The contses of the registers A4, AB, A7 and AB are not offected
by these routines, and availabie Tor the user. The routines update the program pointer

in the fO“O\-"J!u_((AR TR

1 for data iterms and 'iterais, 2 or 3 for arrays.

Routing T:FDSF rmay be wsed 7o obtain data set parameters. The return values from
this routine ars

AR Contoins the cuent control biock address.

AT e Coptaee: the walt bil in il zere and the echo bit in bit one.

Registers &1, A7 Ad A% AS AB, A1G snd A1 are not affected by the routine,
and availabie 1or 1hie cse . The program gointer is updated.

To obtain o seasinat norameters, e a value, the following sequence of instructions
is recommended:
LOR AX ATE
ALK AT2 1

The routine 1:RT ! s
FEVAD LEVAT : LVA? and T:FDSP are calied via the CF instruc-
tion, Gsing A 14 ss stoch oninter The routing (.RT1, s called via the ABL instruction.

Registers A3 413 ang A 1R must cot be changed in an assembier subroutine.

Note: A numiber +* stangars assembler subroutines are heid in the Systern library
and may be cehied from CREDIT programs. They are described in appendix 4.

1.4.5 Arrach Dersch a devicesfile

When & task wants in hiawe exclusive access to a device or file, and locking out all other
tasks from 1/0) at tiis device/file, the task has to execute an attach device instruction
(DSC1. contral cade X'OFE). A time out value in muitiples of 100 msec, must be speci-
fied for gach atact 1o sliow the menitar for supervising all attach requests and prevent
{dead) lock situations. (D801, eanrgl code X'OB'). Time out value may be set to zero,
then contrel is uiven immeciziely 1o the task which issued the request, with an indication
in the exiencad status cade wiwether the device of file is attached or not.

o attach a data-file to a task. If index files are assigned
e attached too. When trying to attach a device,
< re arviach request is put in a device queue

The atiacs “unotion may ha o

P TE E RE Er
'f'd‘}." v

‘9 tasic which issued the attach instruction,

- "
MUSE T 5 oo Tand { coniral code X'0OF),
Foramana "o st from other tasks for this device are queued in
8 TR LrU® it - e s ariss TR device s detached.

CREDIT REFERENCE A4 i

A T/O on a device from a g wihosn 0 0 T e s taR S pass g
by the device qusus ann wiil o

When more than ore gevics o is - e o nTiarent task o the gser program

should be designed 1o prevens «vuu 10w

SUCh asitsation vl QU Wi R T R A T ey Hor eacn other
to release attacheo resguroes,
Exemple: Tovice Yois et b R s o S cooy oty task BO.
Task Al ig: = Coo s A0 assies an O
requast for o L T S L SR RE S 11
TASK AD Vass B0
! :
i i
ATTACH DEV X AT TACH DEV Y
g,
|)) [
1 R . . ©r i
b T - ‘7 i
i ~d

‘n this examole dead lock can be avGeed o when test UL petnre 1ssuing the 1/0
request, for device Y, issues an attach raoes dwome Y b g time-cut value
set. [f device Y is not avaiiable, task A chaeid somnes: derneey device X before
repeating the sequence again,

146 Inter task communicaticr

This facility, if required, Yoas to e incicdent Socitg ystem uzneration (SYSGEN),

By means ot the 1O instructions r-s’t MRETE CHREEAL and RWRITE data can be
transferred from one task to ansther tacs v (2 guste v (ha appropriate inter task
communicaticn file codes must be assigned. 7he communication may be in addressed
(RREAD, RWRITE) or unaddressed e : READ, WRITE}. Tne sending task is the one
which issues the WRITE or RWRITE s and b receiving task is the one which
issues the READ or RREAD instrucion, Moo crstrections are completed until there are
two complementary instructions. {t ¢ wne 8E D ;f.nd ene WiHITE D This means that two
complementary instructions must b2 aeed o, CTENIL fusk: pDeiore any data transfer
takes place and the instructions are corbiates Uhifierent fils codes must be assigned to
input and output. This means that it¢ posb o to corfmeae a task in three ways, as
regards inter task communicas

1) Only input {READ, RREAD) possibie - orly inaut fic code assigned.

2} Only output (WRITE, RWRITFE) nessnie - eniy sutput file code assigned,

3) Bothinputand output possitile — Lot - ut and output file codes assigned.

The task should only use the 1/0 fiic cone assinnen 1ot during system generation.

The file codes for input and/or cotr 1o arcres e OSET deciarations as is done
for 1/0 devices, one data set deciaration for imout and nne for output,

The user is strongly recommenged 1o 37850 the same e godes fol inter task communica-
tion to all tasks, according to tho sinas | fiaterface princighe,

CREDIT REFERENCE MANUAL

When a task issues an inter task communication instruction, and no compiemeniary
instruction exisis, the issued instruction is put into one of the four inter task communi-
cation gueues, depending on whether the instruction was addressed to anot - task
(RREAD, RWRITE!} or unaddressed (READ, WRITE),

Two queues exist in the system, one for READ and one for WRITE (unaddressed). Only
one of these queues may have ong or more entries at any one time, since, as scon as they
both contain an engry, the instructions are matched, communication takes piz: ., and
both instructions are completed.

In the case where a task issues a RREAD or RWRITE (addressed) to another task, and
no complementary request exists, the issued instruction is queued on the addressed
task, When the compiementary instruction is issued, the instruction is completed and
the request is removed from the gueue.

The queueing principle for all inter task communication queues is on the FIFO (first in,
first out) principle. Ttiis means that if a task issues e.g.a READ, it will be queued uritil
any task issues a WRITE, or a RWRITE to this task, and then the matching is carried

out and the instruction is completed. in case of a RREAD or RWRITE, naturally the
first queued instruction may not be the matching one, i.e. it may be addressed to another
task than the one which issued the current request. In this case the first request in the
gueue which is addressed to the current task is matched, and communication takes

piace.

Ifa READ, WRITE, RREAD or RWRITE instruction is to be supervised by the monitor
in respect of time, a time out value should be set before the instruction is executed.
Timing is set with the DSC1 instruction, with control code X‘OB'. Different time out
values in multiples of 100 msec, may be set for each instruction. These values are unigue
to the task which executed the time setting, The data-set-identifier, in the DSC1 instruc-
tion must refer to the corresponding DSET, for which the time must be set.

If no time out supervision is required, the binary data item in the DSC1 instruction,
must be set to —1. If the value in this data item is set to zero, the request is completed
immediately. No queueing is performed.

When the number of characters to be moved in two complementary instructions, is not

egual, the smallest number of characters will be transferred. At completion of the in-
struction, the number of characters transferred will be returned.

1417
!Wﬂy" 1479

CREDIT REFERENCE MANUAL

1.4.7 Notation
The following symbols are used in the Instruction Reference Section (1.4.6).

PP program pointer

equal to

not egual to

greater than

greater than or equal to

less than

less than or equal 10

compare

divide {integer division)

multiply

add

subtract

(Operand} the contents of operand

_— negate {the bar is written above the condition or value which is negated
or complemented).

11

P AAVV L

Ve X

Examples:
(Operand-1) -~ operand-2 The contents operand-1 are stored in

operand-2.

{Operand-1) = (operand-2} The contents of operand-1 are compared
with the contents of operand-2.
{Operand-1) + {Operand-2)— operand-1
The contents of operand-2 are added to the
contents of operand-1 and the result is
stored in operand-1.

1.4.8 Instruction reference

This section describes the syntax and use of each instruction. Intermediate object code

is described for single data-items. For arrays one byte or two bytes must be added for
each index referenced, depending on the addressing mode. When the ADRMQOD option

in the OPTNS directive equals two, data-item, data-set, literal constant, key table, picture
and format references are extended with one byte in the intermediate object code. {(For
details about the object code format, when ADRMCD=1 or 2, see Appendix 8). The
possible values of the variables in instructions are given in Appendix 1. The notation
conventions are described in Section 1.1.5.

1.4.18
May 19789

CREDIT REFERENCE MANUAL

ABORT

Syntax:
Type:
Description:

Condition register:

Condition mask:

Example:

Intermediate
code format:

Abort 1/0 request ABORT

Istatement-identifier] _ ABORT . data-set-identifier

/O instruction

This function will abort a previously set 1/0 request {without wait)
for a device indicated by data-set-identifier, in the same task.

This request is only applicable to keyboard, typewriter, teiler terminal
printer, System Operator Panel {SOP) and intertask communications.

0 if abort is successful
2 if abort is not successful {e.g. 1/0 is already completed}.

0 1 2 3 4 5 6 7
suce | — NOSUCC | — Suce NOSUCC | Uncond-
tional

ABORT DSKBN

Byte 1 0 0 1 1{0 0 0 O

Byte 2 external reference

operand-1 0 I ¥ l data set identifier

Bytes 1 and 2 are filled by the system.

Byte 2 is a reference to an external system routine,
Operand-1 is a reference to a data set.

10/100 refers to the first data set.

1.4.19
May 1379

CREDIT REFERENCE MANUAL

ACTV

Syntax:
Type:
Description:

Intermediate
Code:

Activote ACTV

[statement-identifier! . ACTV (! statement-identifier, task-«dentifier

Scheduling instruction

The task indicated by taskdentifier is activated and execution is
started at the instruction indicated by statement-identitier.
Task-identifier is a reference (o 3 brnary or string data item containing
the task identity, In the case of a string data item, the twe first bytes
must contain the s KSentity.

Byte 1 001 10000

Byte 2 externai reference

operand-1| statement-identifier

operand-2 | task-identitier

Byte 1 and 2 are filled by the system.

Byte 2 is a reference tc an external system routine.

operand-1 is a reference to the statement where execution
has to be started.

operand-2 is a reference to a binary or string data item.

1.4.20
May 1870

CREDIT REFERENCE MANUAL

ADD

Syntax:

Type:
Function:

Description:

Condition

Register:

Condition
mask:

Example:

Intermediate

code format:

Add ADD

[staternent-identifier) ADD data-item-identifier-1, | data-item-identifier-2
lite: .:' nonstant

Arithmetic instruction
{Operand-1} + {Operand-2) - Operand-1

Operand-2 is added to Operand-1 and the result is placed in Operand-1.
Operand-2 is unchanged. Both operands must be binary or both
operands must be decimal, A single data item may be used for both
Operand-1 and Operand-2. In this case the data item is merely added to
itself. The condaition register is set according to the

contents of Operand-1.

0 if {Operand-1) =0

= 1if {Operand-1) > 0

2 if {(Operand-1) < 0

3 if overflow

li

]

1

ol 1) 2] 3lals| s 7
0l wn! <qlover] - uncon-
O =01 <050w]#01 <01 =01 itional

ADD FIELD =W'82%°
ADD WORK,=D'1'

FIELD is declared as BIN
WORK is declared as BCD

Byte 1 o {ofJoJoJolo[1ilL
operand-1 data-item-identifier-1
operand-2 data-item-identifier-2

Byte 1 is operation code {X'02' or X'03')
I.=0 cperanda-2 is a reference to a literai constant.
L=1 operand 2 is a reference to a binary or decimal data item.

1421

vao o per
Mav 187

CREDIT REFERENCE MANUAL

ASSIGN g,

das set-identifier,
ie-name-identifier,
sodentiter) | volume-

Syntax: [steiemeant iedoa:.
control vaiue
volume-riaine.
name ger

Type: 170 instruatio-

Description: Afile cody o oresat o e nn e caterenced by data-set-identifier,
is assignad 'n the Me W % i in the string-data-item refe-
renced by i - < iame, in the da.a item, must
be & bvtes innhs -5 Wnen cantrol-value is 0, the file
will be assigreq z¢ oo LRt ac fnqqrhle by all tasks When
control value is | the ;
accessible by the mer v : i ”»P dafa file may be extended
over maximuim foee vl e T veiume namels) zre Aefined in
the string data itemist o ~ced by voiumea-name- Lertifier(s). Each
data-item must Lontiio s tor the volurn: siame, including trai-
ling blanks,

If an assignment is . " soons
in the binary dats its
The cantents of tnis dar. o=

St an error code (s returned
- vy rlata-item identifier.
it 5.':‘y LS

]

BS8IQ e S oss i pertarmed
Requsst oo
Oisle 120 erpeor
N tree criry o va pevice 1able
o tie daue nrn Hlonk avaliable
One ar mars coies anknown
Fl e Code ey u.‘w.ffd

— File marie e a0 en
File sectiom missing
Fauity i former
IMOFe 5301 & a0 fentd exist

'
——t

WO~ b WN —

Condition =0 it assinnment aieoroafol
register: =2 T assigriment 5 unsuceessful
Condition mask: 0 11 P24 05 6 7
succ | i .~ | UNSUCCUncondi-
o B] tional

Example: ASSIGN DEFILE 1 SHROQDE, FILEN, VOLNAMT, VOLNAMZ

Intermediate
code format:

Byte 1 0
Byte 2
operand-1{ G lT
operand-2 ((Vm_ IR

leient n(]'er

L

CREDIT REFERENCE MANUAL

ASSIGN

intermediate
code format:
(continued)

Continued

ASSIGN

operand-3 data-item-identifier

operand-4 file-name-identifier
Byten number of volumes
operand-5 volume-name-identifier

operand-§ volume-name-identifier

operand-7 volume-name-identifier

operand-8 volume-name-identifier

Bytes 1 and 2 are filled by the system.

Byte 2 contains a reference to an external system routine.

operand-1 is a reference tc a data set.

10/100 refers to the first data set.

operand-2 is the control value {zero or one).
operand-3 is a reference to a binary data item.
operand-4 is a reference to a string data item.
Byte n contains a value filled by the translator.

operand 5, 6 are references to string data items.

1423

May 1879

CREDIT REFERENCE MANUAL

ATTFMT

Syntax:

Type:
Description:

Condition
register:

Example:

Intermediate
code format:

————

Arrach Format ATTFMT

format-livt-identifier
data-iter-identifier

{statement-identifier] w ATTFMT L {
Format controi ;0

The tormar list referenced by the format-list-identifier or the
data-item-identifier, s attached to the current task, A previously
attached forrnat {ist will be detached. Only ore forimat list may
be current per task. Dats-item-identifier reters 1o a st-ing data-
item, which item contains characiers forming 1eyether a valid
format fist, This instroction is oniy used, when the format list
contains input fields which are supposed to receive data from

a keyboard.

Unchanged

w ATTEMT o, FRMTI

Byte 1 0o 0 1 1 o 0 o‘[L

Byte 2 external reference

operand-1 format-list-identifier

Bytes 1 and 2 are filled by tha system.

operand-1 is a reference to a format tist (L=1) or
to a string data-item {L=0).

7.4.24
Liay 1979

CREDIT REFERENCE MANUAL

[8 |
Syntax:

Type:
Description:

Condition register;

Example:

Intermediate code
format:
{tong branch)

Intermediate code
format:
{short branch)

_
Branch i B

; . uate-i i fi , -
[statement-identifier] uw B u i atelldentl NE statement-identifier
condition mask,

Branch instruction

The instruction to be executed is indicated by statement-identifier, if
operand-1 matches the contents of the condition register. Else, the
instruction following the branch will be executed. {f operand-1 is
omitted an unconditional branch (value 7} is generated.

The translator decides whether a shortbranch or longtranch should
be generated, depending on the branch target.

not changed.

B INP3
B.,2,INP4

Bytel | O O 1 1J'_1 L CND
Byte 2 index tc T:BAT

(Byte1 [0 1 0 1]8 |

Byte 1 is the operation code (X'38' up to X'3F")
CND is the condition mask field
Byte 2 contains an index to a branch address table (T:BAT)

CND

displacement

Byte 2

Byte 1 is the operation code (X'50" up to X'6F’)
B =0 forward branching
B =1 backward branching

CND is the condition mask field

Byte 2 contains the displacement

1.4.25
faay 197G

CREDIT REFERENCE MANUAL

BBEOD

Syntax:
Type:
Description:

Condition register:

Example:

tntermediate
code format:
(long branch)

Intermediate
code format:
{short branch)

Branch on begin/end device BEEGD

[statement-identifier] s BBEOD . sratement-idemifier.
Branch instruction.

Ii the contents of the condition register is three {begin or end of
device), the program will branch to the instruction indicated by
statement-identifier. Otherwise the instruction following the
branch wiil be exeruted,

This instruction should be used after an 1/0 instruction.

The transtator decides whether a shortbranch or longbranch should
be generated, depending on the branch target.

Unchanged.
BBEOD LI DEVERR

Byte1] 0 0 1 11 0 1 1]
Byte 2 index to T:BAT j

Byte 1 is the operation code {X’3B")
Byte 2 contains an index to a branch address table {(T:BAT).

Bytet| 0 1 ¢ 11B 0 1 1

Byte 2 displacement

Byte 1 is the operation code (X,58", X’53")
B=0 forward branching
B=1 backward branching

Byte 2 contains a displacement.

1.4.26
May 1979

CREDIT REFERENCE MANUAL

Syntax:
Type:
Description:

Condition register:

Example:

Intermediate
code format:
{(long branch)

Intermediate
code format:
(short branch)

Branch on equal

[statement-identifier] s BE u statement-identifier
Branch irstruction.

If the contents of the condition register is zero (equal), the program
will branch to the instruction indicated by statement-identifier.
Otherwise the instruction following the branch will be executed.
This instruction should be used after a comparison.

The trans!ator decides whether a shori branch or long hranch should
be generated, depending on the branch target.

Unchanged.
BEL_] EQUAL

Byte? ' 0 O 1 111 0 0 ©
Byte 2 index to T:BAT

Byte 1 is the operation code X'38°)
Byte 2 contains an index to a branch address table (T:BAT).

r‘ém o 1 0 1|8 0 0 0

j Byte 2 displacement

Byte 1 is the operation code (X'58°, X'50")
B=0 forward branching
B =1 backward branching

Byte 2 contains a displacement.

-y
Foa

May 1578

CREDIT REFERENCE MANUAL

| BEOF | Brnch oit Enid of Fite | BZOF

Syntax: [statemert o ifiorl o BEOF L statement-identif.er.
Type: Branch gtz
Description: If the contents oo i wanitiian reqister is one (end oF File), the

program will branch to e instraction indicated by siatement-
identifier.

Otherwisg the mstruct:on followena the hranch will be exacuted.
This insteuctinn <houle e gsadd ofter an 10 instracticn.

The transiator duriles
he qearratodd. denasord e e e B ach Targel.

Condition register: Uncharged.

Example: BEQF EMNTOF!

intermediate

code format:

tlong branch) Bytel [8 O 1 171 ¢ o 1]
Byte 2 | index o T 8AT |

Byte 1 is the operation code (X397
Byte 2 contains an index to a branch address table (T:BAT)

intermediate
rode format:
U ——
{short branch} Bytel1 | O 1 ¢ 11 a78 0
__________ S]
Byte 2 dispiacernent

Byte 1 is the operation code {X'28", X'517)
B =0 forward branching
B =1 backward branching

Byte 2 contains a displacament

1.4.28
May 1975

#rxcrey aoshort branch or fong branch should

CREDIT REFERENCE MANUAL

Syntax:
Type:
Description:

Condition register:

Example:

Intermediate
code format:
(long branch)

intermediate
code format:
(short branch)

Branch on Error | BERR I

[staternent-identifier] w BERR w statement-idersifiar,

Branch instruction.

i+ the contents of the condition register is twa (Error!, the program
wili branch to the instruction indicated by statement-identifier.
Otherwise the instruction following the branch will be - cecuted.
This instruction should be used after an 1/0 instruction.

The translator decides whether a short branch or long branch should
be generated, depending on the branch target.

Uncharniged.
BERR!.JERRORI

Byte1 | 0 0 1 11 0 1 0O

Byte 2 index to T:BAT

Byte 1 is the operation code {X'3A7)
Byte 2 contains an index to a branch address table (T:BAT)

Byel|0 1 o0 1]lBJO 1 0

Byte 2 displacement

Byte 1 is the operation code {X'BA’, X'62')
B =0 forward branching
B =1 backward branching

Byte 2 coniains a displacement.

4 29
Vay 1679

CREDIT REFERENCE MANUAL

Syntax:
Type:
Description:

Condition register:

Example:

intermediate
code format:
{long branch)

Intermediate
node format:
tshort branch)

Branch on greater l BG :I

[statement-identifier] w BG u statement-identifier.

Branch instruction.

If the contents of the condition register is one (greater), the program
will branch to the instruction indicated by statement-identifier,
Otherwise the instruction following the branch will be executed.
This instruction should be used after a comparison.

The translator decides whether a shart branch or long branch should
be generated, depending on the branch target.

Unchanged.
BG LI GREATER

Byte1{0 0 1t 1]1 0 0 1

Byte 2 index to T:BAT

Byte 1 is the operation code (X'39')
Byte 2 contains an index to a branch address table {T:BAT)

Bytel | 0 1 0O 1|BJO 0 1

Byte 2 displacement

Byte 1 is the operation code {X'59', X'51")
B=0 forward branching
B =1 backward branching

Byte 2 contains a displacement.

1.4.30
May 1979

CREDIT REFERENCE MANUAL

BL
Syntax:
Type:
Description:

Condition register:

Example;

Intermediate
code format:
{long branch)

intermediate
code format:
{short branch)

Branch on fess BL

[staterment-identifier] — BL ..statement-identifier.
Branch instruction.

It the contents of the condition register is two (less!, the program
will branch to the instruction indicated by statement-identifier.
Otherwise the instruction following the branch will be executed.
This instruction should be used after a comparision.

The translator decides whether a short branch or long branch should
be generated, depending on the branch target.

Unchanged.
BLL LESS

Bytei | 0O O 1 1 1 0 1 0

Byte 2 index to T:BAT

Byte 1 is the operation code {X'3A’)
Byte 2 contains an index to a branch address table (T:BAT)

Byte1 | O 1 0 1 B{0O0 1 0
Byte 2

displacement

Byte 1 is the operation code {X'5A’, X'B2")
B = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacement.

1.4.51
May 1979

CREDIT REFERENCE MANUAL

8N

Branch on negative

Syntax:
Type:
Description;

Condition register;

Example:

Intermediate
code format:
{long branch)

Intermediate
code format:
{short branch)

[statement-identifier] ., BN i statement-identifier.

Branch instruction.

If the contents of the condition register is two {negative), the pro-

BN

gram will branch to the instruction indicated by statement-identifier,

Otherwise the instruction following the branch will be executed,
This instruction shouid be used after an arithmetic instruction.

The translator decides whether a short branch or long branch should

be generated, depending on the branch target.
Unchanged.
BN LI NEG

Byte 1 0 0 1 1 1 0 1 0

Byte 2 index to T:BAT

Byte 1 is the operation code (X'3A")
Byte 2 contains an index to a branch address table T:BAT},

Bytet |0 1 O 1[(B|O0 1 Q0

Byte 2 displacement

Byte 1 is the operation code (X'5A", X'52°)
B = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacement

1.4.32
May 1979

CREDIN REFERENCE Fiwiiis

d ' Sranct an not equal BNT
Syntax: lstatement-identifier] o BNE u statement-identifier.
Type: granch instruciion
Description: it the contents of the condition register is unequal 1o 2erp {not

Condition register:

Example:

Intermediate
code format:
{long branch)

Intermediate
code format:
{short branch}

equall, the program wiii branch to the instruction indicated by
statement-identflier,

This instruction shoutd be used after a comparision.

The transiator decides whether @ short branch or long tranch should
be generated, depending on the branch target.

Unchanged.
BNo U

Spe1 10 © t i(1 1 0 0

-
|
|
!

Byie 2 index to T:BAT

Byte 1 is the operation code (X'3C"}
Bvte 2 contains an index to a branch address table (T:BAT).

Byte d ' 0 1 0 [B | 1 6 0

Byte 2 displacermnent

Byte 115 the operation code (X'bC’, X'64°)
B =0 forwa ¢ uranching
B = 1 backward branching

Byte 2 containg a displacement.

a1
Sty T

CREDIT REFERENCE MANUAL

BNEOF

Branch on no Fnd of file

BNEOF

Syntax:
Type:

Description:

Condition register:

Example:

Intermediate
code format:
{long branch)

Intermediate
code format:
(short branch}

[statement-identifier] (y BNEGF (. statement-identif.er
Branch instrisction.

If the contents cf the condition register is unequa! to one (Not End
of file}, the program wil! branch te the instruction indicated by
statement-identifier

Otherwise the insiruction following the branch will be executed.
This instruction should be used after an /0 instruction.

The translator decides wiether & short branch or iong branch should
be generaied aepending on the branch target.

Unchanged
BNEOQF Lt NOTEOF

Byte? 10 0O 1 111 1+ 0 1

Byte 2 index to T:BAT

Byte 1 is the operation code {X'3D’)
Byte 2 contains an index to a branch address table (T:BAT).

Byte 1 0 1 G 1 B 1 0 1

Byte 2 displacement

Byte 1 is the aperation code (X'5D’, X'55')
B = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacement.

1.4.34

May 1075

CAREDHT REFERLENE (e
A — ol
BNEER] Branch on no error BNERR
- I
Syntax; {staterment-identifier] L BNERR U statement-identifier.
Type: Branch instruction.
Description: H the contents of the condition register is unequal to two (No Error),

Condition register:
Example:

Intermediate
code format:
{long branch}

Intermediate
code format:
{short branch)

the prograr vwiil Biranch to the instruction indicated by statement-
identifier.

Otherwise the instruction following the branch wili o: executed.
This instruction should be used after an 1/Q instructieon,

The translator decides whether a short branch or long branch shouid
be generated, depending on the branch target.

Unchanged.
BNERR LI NOERR

—
Byrel (O O 1 1|1 1 1 0
H .

| By 2 incex :o T:BAT

Byte 1 is the operation code {X'3E")
Byie 2 contains an index to a branch address table (T:BAT)

Byte 1 E 0 i 0 1 B |1 1 0
i
I

Byte 2 displacement

Ryt 1 s The operation code (X'5E7, X’'56')
8 = U forward [rranching
& = 1 backward branching

B.te 2 contains & displacement.

CREDIT REFERENCE MANUAL

BNG Branch on not greater BNG
Syntax: [statement-identifier] 3 BNG . statement-identifier,
Type: Branch instruction.
Description: if the contenis of the condition register is unequal to cne {not

greater), the program wili branch to the instruction incicated by
statement-idantitier.

Qtherwise the instruction following the branch will be executed.
This instruction should be used after a comparision.

The translator decides whether a short branch or long branch should
be generated, depending on the branch target.

Condition register: Unchanged.
Example: BNGLIMOTGRT

Intermediate
code format:
{long branch)

Byte? [¢ O H 1 1 1 0 1

Byte 2 index to T:BAT

Byte 1 is the operation code {X'3D’)
Byte 2 contains an index to a branch address table (T:BAT).

Intermediate
code format:
{short branch}

Bytel | O 1 o 1 B i1 0 1

Byte 2 displacement

Byte 1 is the operation code (X'5D', X'55")
B = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacernent

1.4.36
May 71979

CREDIT REFERENTE WMANUAL

BNL

Branch on not less BNL

Syntax:
Type:

Description:

Condition register:
Example.

Intermediate
code format:
(long branch}

intermediate
code format.
{short brarich}

[statement-identifier] y BNL s statement-identifier.
Branch instruction

If the contents of the condition register is unequai to two {not less},
the program will branch to the instruction indicated by statement-
identifier,

Otherwise the instruction following the branch witl b= 2xecuted.
This instruction should be used after a comparision.

The translator decides whether a short branch or long ranch should
be generated, depending on the branch target.

Uncghanged.
BNLt I NOQTLESS

Bytel [O O 1 1{1 1 1 0

Byte 2 index to T:BAT

Byte 115 the operation code (X'3E")
Byte 2 contains an index to a branch address table (T:BAT].

Bytel1 10 1 o 1 B |1 1 0

Byte 2 displacement

Byte 1 is the operation code {X'BE’, X'b6’)
B = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacement.

1.4.37
May 1879

CREDIT REFERENCE

MANUAL

BNN

Syntax:
Type:
Description:

Condition register:
Example:

Intermediate
code format:
(long branch)

Intermediate
code format:
(short branch}

[statemeni-identifier] BNN ., statement-identifier,

Branch on not negative

Branch instruction.

BNN

If the contents of ihe condition register is unequal to 1wo {not nega-
tive), the program will branch to the instruction indicated by statement-

identifier,

Otherwise the instruction following the branch will be executed.
This instruction should be used after an arithmetic instructicon.

The translator decides whether a short branch or long branch should

be generated, depending on the branch target.
Unchanged.

BNN LI NOTNEG

Byte 1

a

0 1 1 1 1

Byte 2

index to T:BAT

Byte 1 is the operation code {X'3E’)

Byte 2 contains an index to a branch address table {T:BA™},

Byte 1

i 0 1 B} 1

Byte 2

displacement

Byte 1 is the operation code {X'5E’, X'56’)

B = 0 forward branching
B = 1 backward branching
Byte 2 contains a displacement.

1.4.38
May 1979

CREDIT REFERENCE IMANUAL

BNOK

Branch on not OK BNOK

Syntax:
Type:

Description:

Condition register:
Examnple:

intermediste
code format:
{long branch)

Intermediate
code format:
{short branch)

istatement-identifier] 1 BNOK u statement-identifier.
Branch instruction

If the contents of the condition register is unequai 1o zero (not oké),
the program with branch to the instruction indicats:: vy statemen ;-
identifier

Otherwise the instruction following the branch will be executed.
This instruction should be used after an 1/0 instrucsi- »

The transiator decides whether a short branch or long sraneh shouid
be generated, depending on the branch target.

Unchanged.
BNOK NOTOKE

Byte1 10 O 1 tl1 1 0 0

Byte 2 index to T:BAT

A |

Byte 11s the operation code (X' 3C’)
Byte 2 contains an index to a branch address table (T:BAT}.

f
i Bytel | 0 1 0 1 B 1 0 0O

Byte 2

——

displacement

Byte 1 is the operation code (X'BC, X'54')
B = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacement

i.4.59
ftay 1570

CREDIT REFIIRENCE MANU AL

BNP

Syntax:
Type:

Description:

Condition register:

Example:

Intermediate
code format:
{long branch)

Intermediate
code format:
{short branch)

istatemeni-identitier] o BNP | statement-identifier,

Brarch msteucts o

Hf the contans of
positive}, the o

u[__']i eI

Brancé an not pasitive

e cocginon regisier s unegua’ 1o one (not
P wik bianch to the instruction incicated by

statementaiden: hier:

Otherwise the insirucucn foilowing the branch will be executed.
This instruction shoold e used after an arithimetic instruction,
The tranststor deciwes aneithier 3 short beanch or long b -anch should

generaiza, fiepsteong on the branch target,

Unchangad,

BNP L NOTE

! {

B e st

Bytel I 0 0

BNP

10 1
|

Byte 2

‘ndex to T:BAT

Byte 1 is the operation code (X°3D")

Byte 2 contains an index to 4 hranch address table {T:BAT).

Byte 1 0 1

9 1 B |1

Byte 2

displacement

Byte 1 is the operation code (X'8D7, X'65%)

B = 0 forward branching
B = 1 backward franching
Byte 2 contains a displacement

1.4.40

May 1379

CREDIT REFERENCE MANUAL

BNZ

Branch on not zero BNZ

Syntax:
Type:

Description:

Condition register:
Example:

Intermediate
code format:
{long branch)

Intermediate
code format:
{short branch)

'statement-identifier] u BNZ U statement-identifier.
Branch instructicn.

If the contents of the condition register is unequal to zero (not zero},
the program wili branch to the instruction indicated by statement-
identifier.

Otherwise the instruction following the branch will be 2xecuted.
This instruction should be used after an arithmetic instruction,

The translator decides whether a short branch or long ranch should
be generated, depending on the branch target.

Unchanged.
BNZ L NONZER

e

Byte T { O 0 1 1 1 1 0 0O

—— e —

Byte 2 index to T:BAT

Byte 1 ;s the operation code {X'3C’)
Byte 2 contains an index to a branch address tabie {T:BAT).

! Bytel | O 1 o 1 B | 1 0 0
L

i-j%y'te 2 displacement

Byte 1 is the operation code (X'6C’), X'54)
B = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacement.

7.4.41
May 1979

CREDIT REFERENCE ManuAtL

I BOFL Soocti on overtion BOFL

Syntax: [statermont fie - fal BIFL | stgterment-identifser,

Type: Branch instro oo,

Description: H the content: oo oo 2o raglster s three (overtlow), the pro-
gram wili brow o s nsiructior ndicated by state:nent-identifier,

Otherwe e mer Cnon £ 050wy the branch will be executed.
This instroct-an sheuid be used after 2n arithmetic ine truction,

Lr v wRether s oshort branch o lang branch should
be generaied, daperd ng e the brianch target

Condition register Uncharige
Example: BOFL . v i

Intermediate
code format:
“Ong branch) " ‘ T T e """"'T"“"""“’ - ‘-_""“"_[

Byte 2 i wad-w to TIBAT

e e —

Byte 1.5 the operation code (X387
Byte 2 contains an index to a branch address table (T:BAT).

Intermediate

code format:

{short branch) : S
Byte? ' 0 1 G 5 B 1O 1 1

Byte 7 displacemerit

Byte 1 15 the operation code (X'58°, X'63°}
B = 0 forward brancking
B ~ 1 backward bran:-h.ng

Byte 2 contamns 2 displacement,

i4.42
May 15.°8

CREDIT REFERENCE MANUAL

BOK

Syntax:
Type:
Description:

Condition register:

Example:

Intermediate
code format:
{lang branch)

intermediate
code format:
(short branch)

Branch on OK

BOK

[statement-identifier] L BOK w statement-identifier.

Branch instruction,

If the contents of the condition register is zero (o¥#), the program
wiil branch to the instruction indicated by statemer . identifier.
Otherwise the instruction following the branch will be executed.
This instruction should be used after an 1/0 instruction.

The translator decides whether a short branch or lor

Sranch should

be generated, depending on the branch target.

Unchanged.

BOK Lt OKE
Byte 1 0o ¢ 1 1 1 0 0 0O
Byte 2 index to T:BAT

Byte 1 is the operation code {X’38")

Byte 2 contains an index to a branch address table (T:BAT).

Byte 1

lo

01 B

Byte 2

displacement

Byte 1 is the operation code (X'68’, X'5()
8 = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacement

1.4.43
May 1979

CREDIT REFERENCE MANUAL

BP

Syntax:
Type:
Description:

Condition register:

Example:

Intermediate
code format:
{long branch)

intermediate
code Tormat:
(short branch)

Signck on positive BP

[statement-iden: T L BP L staterment-identifier.

Branch instruation

If the contents «.f the condibion register 1s one {positive}, the program
will branch to e instruction indicated by statement- dentifier,
Otherwise the inst. ction (sliowing the branch will be executed,

This instruciion s il be used atter 2 arilhmetic inctruction.

The transiator de whather a short branch or long branch should
be generated, depaading on the iranch target.

Unchanga~

BP L POS

Bytel , G 0 . 1.1 0 0 1

i
i - e
i
i
i

ingdex to T:8AT

Byte 1 is the operation code (X'39")
Byte 2 contains an index 1o a branch address table {T:BAT).

Byte 1 a 1 0

Byte 2 dispiacament

Byte 1 is the operation code (X859, X'51")
B = C forward branching
B = 1 backward branching

Byte 2 contains a displacement,

1.4.44
May 1373

CREDIT REFERENCE MANUAL

BZ

Syntax:
Type:

Description

Condition register:

Example:

Intermediate
code format:
{long branch)

Intermedtate
code format:
{short branch}

Branch on zero BZ

[statement-identifier} i BZ w statement-identifier.
Branch instruction.

if the contents of the condition register is zero (zero}, the program

will branch to the instruction indicated by statemu:: . lentifier,
Otherwise the instruction following the branch will be executed.

This instruction should be used after an arithmetic instruction.

The translator decides whether a short branch or long »ranch should be
generated, depending on the branch target.

Unchanged.
BZ| 1 ZERO

Bytet |0 0 1 1{1 0 0 0

Byte 2 index to T:BAT

Byte 1 is the operation code (X'38')
Byte 2 contains an index to branch address table {T:BAT).

Bytel {0 1 O 1 B|O O O

Byte 2 displacement

Byte 1 is the operation code (X'58°, X'50’)
B = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacement.

1.4.45
May 1978

CREDIT REFERENCE MArnUAL

CALL it [CALL
[
Syntax: [statement-identifier' L -4 L1 i subrottine-dentifier | actua.-parameter-list] . . .

Type: Subroutine controf tnarrocs

Description: Control is given to & subrouone » oitten in assembly ianiguage. Thus, sub-
routine-identifier must e aeslarad 48 an externa! wentifier {EXT).

Actual parameters which con be passed to the subrouting, in zddition to
the pararmeters histcd 10 e CREDTT synrax defimition, incluce data set
identifiers. There is no ! s v remnar of narameters wh ch can be
passed. Paramotors may ais si2cl, using the CON directive,

Literai constant paramasters of “he one "X arg not allowed.

The programmer ¢ cesponsibie Tor 2 correct return from the assembly

routine to the tnieroreter, Hence when parameters are passed to the

subroutineg, the program pointer Bas 1o be updated by the asszmbly

routine, prior to cantrol being given back 10 the interpretar.
Intermediate code format:

Bytel |O0] 0] 1] 1 c]o ollL
aperand-1 subrouting jaentifier
: operand"2E narameter E
! ;
R e T

Byte 1 is the operation code (X307,
operand-1 is an external reference to ths subroutine.
operand-2 etc. are avaiiable for passing pat arneters.

siay 1979

CREDIT REFERENCE MANUAL

CBE Compare and branch on equal CBE
Syntax: [statement-identifier] ws CBE w data-item-identifier-1 1 data-item-identifier-2
i iiteral constant

,Statement-identifier

Type: Branch instruction.
Function: {Operand-1} ~ {Operand-2}
Description: The contents of operand-1 are compared with the contents of operand-2.

The condition register is set according to the result of this ccparison,
When the two data items have a different size, the compariscn will be
executed as follows:
a) for string data items the shortest item will be extended (by the
interpreter) with blank characters (X'20°),
b} for decimal data items the shortest item will be extended (by
the interpreter} with zero digits {X'0’).
if the contents of both operands are equal, the next instruction to
be executed is found at the address specified by statement-identifie’
If the contents of hoth operands are not equal, the instruction fo!
lowing the compare and branch equal (CBE) will be executed.
Statement-identifier may only refer to a statement which is within
the limit of 255 bytes before the compare and branch (incl. 4 oytes
of the compare and branch) or 255 bytes after the compare and
branch on equal.
Operand- 1 and operand-2 must refer to the same type of data item
decimal, binary or string.

Example: CBE INLEN, $MIN,RDERR2
CBE INLEN, CBINO, RDERRZ2

Condition register: if both identifiers are references to numeric data items.

=0 if (Qperand-1) = {Operand-2)
= 1 if (Operand-1) > (Operand-2)
= 2 if (Operand-1}< (Cperand-2}

Condition register: |f both operands are of the type STRING or STRINGI
=0 if {Operand-1) = (Operand-2}

intermediate
code format: i

iels |0 0 oL

data-item-identifier-1

data-item-identifier-2

: i
| Byten ! displacement
1 H

1.4.49
May 1879

CREDIT REFERENCE MANUAL

CBE

Contintied

Byte 1 is the operation code {X"10’, X"11’, X'20°, X'221')

B = 0 forward branching

B = 1 backward branching

L=1 operand-2 is a reference to a literal constan?.

L=0 operand-2 is a reference to a data item.

operand-1 a:+1 operand-2 are references to data
itemns of the type decimal, binary or
string.

Byte n contains a displacement.

1.4.50
May 1979

CBE

CREDIT REFERENCE MANUAL

CBG

Syntax:

Type:
Function:

Descriptian:

Example:

Condition register.

Condition register.

Cormpare @ branch on greéater | CBG ,

o — .

istatement-identifier] WCBG w data-item-identifier—’.,Er_éata-item-identifier—?
; literal constant

Statement-identifier
Branch nstruction.
tOoarandg-1}) -+ {Operand-2)

Tha contents of operarnid-1 are compared with the contents of operand-2,
The condition register is set according to the resu't of this con parison.
When the two data itemns have a different size, the comparison + ! be
axecuted 4s follows,
al for string data iterrs the shortest item will be extended (by the
interpreter) with Blank characters (X'207.
n) for decimal data items the shortest item will be extended (by
the interpreter) with zero digits (X'07).
It the contents of eperand-1 is not greater than the contents of
operant-Z, the instruction following the compare and branch on
gregter (CBG) will be executed.
Sratement-identilier may only refer 1o a statement which is within
ihe iirmit of 253 bytes before the compare and branch {incl, 4 bytes
of 1he compare and branch) or 255 bytes after the compare and
branich on greater
Ugperand-1 and operand-2 must refer to the same type of data item
decimal, binary or string.

CBG INLEN, $MIN K RDERR3

oeC INLEN, CBINQ, RDERR3

B both wdemtifiers are reterences to numeric data items.
- M {Gperand-11 = (Operand-2)

= 1f {Operand-1} > (Dperand-2)

= 29 {Onerand- 1)< {Operand-2)

I both operong. ure of the type STRING or STRING!
= ot {Oiperang- 1Y - Uperand-2)

CREDIT REFERENCE MANUAL

CBG

Intermediate
code format:

Continued
Byte 1 0 0]1-B| B C 0] L
operand-1 data-item-identifier-1 .
operand-2 data-item-identifier-2 E
Byte n displacement

Byte 1 is the operation code (X' 127, X'13", X'22', X'23")
B = 0 forward branching
B = 1 backward branching
L=1 operand-2 is a reference to a literal constant,
L=0 operand-2 is a reference to a data item.
operand-1 and operand-2 are references to data
items of the type decimal, binary or
, string.
Byte n contains a dispfacement.

1.4.52
May 1979

CBG

CREDIT REFERENCE MANUAL

cBL Commpare and branch on less ' CBL
Syntax: (staterrentidentifier] « CBL v data-item-identifier-1 f "ta-item-identifier-2
l:‘=u-ral constant

Sstatement-identifier

Type: Branch nstuehion,
Function: {Oparand- 1) = viperandg-2]
Descriptior: The contents of cperang-1 are compared with the contents of -~ erand-2.

The corddition registe: 15 set according ta the result of this comrnariscn.
Whian the two data items have a different size, the comparison - ! be
executsd as foliows:
4) for suring data items the shortest :tem will be extended {by
the interpreter) with biank characters {X20°).
bl for dec:mal data items the shortest item will be extended {by
the interoretar; with zero digits (X'0°).

It the corvants of operand-1 is less than the contenis of operand-2,
e next insiruct:on to be executed is found at the address specified
by statement-identifier,
i thye egrrents of ooerand-1 is not less than the contents of
operand ¢, the instuction following the compare and branch on
l2s5 {CE L) will be exeguted.
Gtatemant-idzntifier may only refer to a statement which is v on
tne it of 255 bytes befare the compare and branch on less linel,
4 bytes of the compare and branch) or 255 bytes after the compare
anua branch.
Operand 1 and opetand-2 must refer to the same type of data item -
dachimal, oinary Or string.

Example: CBL INLEN, $MIN, RDERR4
CBL INLEN, CBINO. RDERR4

Condition register. If both identifiers are references te numeric data items.

=0 i {0psrand-1) = {Operand-2}
= 1 Operand 1 > (Operand-2)

s 2 (Operand- V1 Omerand-2)
Condition remister: if poih opeiands ars of the type STRING or STRING!

W TV (D per gt 1 Cirmrancot
Y Vot anie HRTENG-L

CREDIT REFERENCE MANUAL

CBL

{ntermediate
code format:

Canninued

Byte 1 o oi{18!/2:0 1 0L
operand- 1 N data-item-identifier-1

operand-2 | M(.:l..;;':._-:“'i-‘L;l-ﬁidentiﬂer 2

Byte n disp!acemer:{—_—nwﬁ_m_-———q

Bvte 1 is the uperation code (X714 X715, X'24°, X'25)

B = O forward branching

B = 1 backward branching

L=1 operand-2 is a reference to a {iteral constant,

L=0 operand-2 15 a reference to a data item.

operand-1 and operand-2 are references to data-
itemis of the type decimal, binary or
string

Byte n contains a displacement.

14.54
May 1979

CBL

CREDIT REFERENCE MANUAL

CBNE

Syntax:

Type:
Function:

Description:

Example:

Condition register:

Condition reqister;

Cormpare ang branch on nat equal CBNE

istaternent:oer titier) L CBNE o1 data-item-identitier-1, j‘data-item-identifierQ
{-teral constant

Statement-identifier
Brapen wwsiruc son,
{Operand-1) = tUperand-2)

The cortents of operand-1 are compared with the contents of o 2rand-2,
The condition register is set according to the result of this comp. * son,
When the two data items have a different size, the comparison v @ 3
executed as toliows:
al fui string deata items 1he shoriest item will be extended (by the
terpretes) with blank characters (X207,
0} for decimal data lems the shortest item will be extended (by
the nterpreter) with zero digits (X'0).
itthe contents of operand- T is unequal to the contents of aperand-2,
the next inch achion 1o be executed is found at the address specified
by staternent-identitier,
in o otnesr casey the instrdction following the compare and branch
on not gual - L3NE) will be executed.
statermentdentfier may only refer to a statement which is wiit in
the ot of 250 nytes before the compare and branch on not eg...:)
{ivel -3 byies of the compare and branch) or 265 bytes after the
coMipare snd branch,
Operann- and operand-2 must refer to the same type of data ite:ri —
decimisi, Tinary or string.

CBNE NLEN, $MIN, RRDERRS
CRNE INLEN. CHINDO, RDERRS

Y heth wdentitien s are referances to numeric data items.
=i tCperand- 1) = (Operand-2)
s bl iGoernad 1 > 10perand-2)
= 2t idperane VY <UOQperand-2)
bbb onarands are o the type STRING or STRINGI

=t iparae

= {Cperand-2)

CREDIT REFERENCE MANUAL

CBNE

Continued CBNE

Intermediate
code format:

Byte } g 0 I 1. lré ; i O Q| L
S R -

operand-1 data e identifier- 1

operand-2 cata-itemn-identifier 2

Byte n i -A —5;!7\9_:\—-1‘E)

Byte 1 is the operation cods (37187 X'19°, X'19°, X'28°, X'29')
B = { farward branching
B =1 packviard branching
L=1 operani 2 is a reference to a fiteral constant.
L=0 operand-2 is a reference to a data item
operand-1 and cperand Z are references to data-
itams of the type decimal, binary or
string.
Byte n contains a disptacement.

1.4.56
May 1573

CREDIT REFERENCE MANUAL

CBNG

Syntax:

Type:
Function:

Description:

Example:

Condition register:

Condition register:

Comypgare and branch not greater { CBNG

rmrrar—

istatement-identifier! s CBNG O data-item-identifi. -1.]data-item-idet;*ifier-2
literal constant

,statement-identifie:
Branch instruction,
1Gperand-1) -+ (Operand-2}

The contents of operand-1 are compared with the contents of operand-2.
The condition register 15 set accarding to the restlt of this cc -parison.
When the wo data items have a different size, the comparisce 2 't be
executed as foliows:
a} for string rdata itams the shortest item will be extended {by the
interpreter) with blank characters { X207,
b) for decimal data items the shortest itern will be extended {by
tha intarpreter) with zero digits (X'0'),

it rive contents of operand- 1 1s not greater than the contents of
cperand-2, the next instruction to be executed is found at the
address specitied by statement-identifier,

tn aii other cases, the instruction following the compare and branch
on ot greater {CBNG) will be executed.

Blatement idgentitier may onfy refer to a statement which is within
ire himii of 255 bytes before the compare and branch on no: - oegte
finc! 4 bytes of the compare and branch) or 255 bytes after the
compare and branch

Qperand-1 and operand-2 must refer to the same type of data item —
decimai, binary or string,

CBNG INLEN, $MIN, RDERRS
CBNG INLEN, CBINQO, RDERRb

H both identitiers are references to numeric data items.

= 0t {Operand-1) = (Operand- 2}
= 1 it {Operand- 1} >{0Operaid-2}
= 7 4 410perend-1) < {Onerand-2)

¥ hoth sperands are of the type STRING or STRINGI

B

S iOperacd- 1y {Qperand-2)

k]

f

CREDIT REFERENCE MANUAL

CBNG

Intermediate
code format:

Continued

Byie 1 0 GW 1-B | B | 1T 0 1 L
operand- 1 data-item-identifier-1
operand-2 data-item-identifier-2

Byte n displacement

Byte 1 is the operation code (X"1A’, X'1B", X'24A", X'2B")

B = 0 forward branching

B = 1 backward branching

L=1 operand-2 is a reference to a literal constant.

L=0 operand-2 is a reference to a data item.

operand-1 and operand-2 are references to data-
items of the type decimal, binary ar
string.

Byte n contains a displacement,

1.4.58
May 1979

CBNG

CREDIT REFERENCE MANUAL

—
CBNL Loinpere and hranet onnot fess b ooswl ;
e

Syntax: pataternentoo: il WOBNL w data-item-ideniitie ~‘!,[oata—item-iuenth .

ilitera corstant

statemernit-identifier

Type: Branch nstryction,
Function: {perand- 1) - A\Unerand-2Z;
Descrniption. The o antents of aperand- T are compared with the con:ar s of operand-2.

camparison.
sn will be

Phe candimon registen s set accerding 10 the result of t
Lwo cota iterns have a different size, the compe
s fnliows,

Gata ttens the shortest item will be extenaed

the

te

the interpreter! with rero digits {(X'07),
£ the contents of 2oerand 1108 not less than the contenis of o
the noxt insiruction 1o be executed is found at the address speny’ o
Dy staternentadezniifer

s coirents Sf operand-1 is not lesses than the contents of

cperandg-Z, tre next mnstreclion to be executed is found at the
address gpecified oy statement-identifier.

in ail other cases, the instruction following the compare and
braneh o iess tCBNLY witl be executed.

Stetemeatdenttier may oniy refer 1o a staterment which 1s within
tha fiove of 205 hytes before the compare and hranch on net less
(el 4 bytes of The compare and branch) or 265 bytes after the

cemtare snd brangn
Operand-T andd ceerand-2 must refer to the same type of data it ~
G Danary o string,

Exampie: CEBNL INLERN, $MIN, RDERRY
CBINL INLEN, CBINO, RDERRY

Condition register: 1t botn denttiers are references to numertc dara ftams.

o Uperand: 1 > 10perand-2

= (o {perand 12 (Oparand-2)
1
= 2 Operanag- 1< {Operarcd-23

Condition rea:ster: f both ape:ands are 0 the 1ype STRING or 57 RINGI

-Gt i Dpeiand 1y Teerand 2Y

CREDIT REFERENCE MANUAL

CBNL

Intermediate
code format!

Continued

Byte 1 Q!B B 1 1 0 L.
operand-1 data-item-identifier-1
operand-2 data-item-identifier-2

Byte n displacement

Byte 1 is the operation code {(X'1C’, X"1D', X'2C’, X'2D").

B8 = 0 forward branching
B = 1 backward branching

=1 operand-2 is a reference to a literal constant,
L=0 operand-2 15 a reference to a data item.
operand-1 and operand-2 are references to data-

iterns of the type decimal, hinary or
string.

Byte n contains a displacement.

1.4.60
May 1979

CBNL

CREDIT REFERENCE MANUAL

CLEAR Clear CLEAR l

Syntax: !statement identifier] LICLEAR L] data-item-identifier
Type: Logical instruction.
Function: 0 - data-item-identifier

Description: The content of data-item-identifier is set to zero {FALSE}.
Data-item-identifier must refer to a boolean data item. (Length 1 bit)
The condition register is set according to the previous value of dats-
item-identifier.
Condition
register: = Qif {data-item-identifier} = 0

Condition mask:

o |1 |2 |3lais]|s |7
=0 | - | -] ~|#0 [=] = [-

intermediate code format:

Byte 1 0 1 c 0o 0 0O O o
Operand-1 data-item-identifier

Byte 1 is the operation code {X'40').
Operand-1is a reference to a boolean data item.

1.4.61
AMay 1979

CREDIT REFERENCE MANUAL

CMP

Syntax:

Type:
Function:

Description:

Condition
register:

Condition
rmask:

Example:

Compare

[statement-identifier! . C5%0F wu data-itemadentifier- 1,] data-1 tem-identifier-2
literai constant

Arithmetic instruction
{Operand-1) — {Operand -2}

Operand-1 is comarad with Operand-2.
The condition reyister is set accoiding 16 the result of this comparison.
When the two data items have a difterent size, the comparison will be
executed as follows:
a) for string data items tne shortest item will be extended (by the
interpreter) with Diank cheractars (X207,
h) for decimal data items the shoriest item witil be extended (b
the interpreter) w.th zero digits (X0,
Both operands must be the same type of data item — decimai, binary or
string.

If both operands are numeric or string data items:

=0 if {operand-1} = {operand 2}
= 1 if (operand-1) > {operand 2)
= 2 if {operand-1)< {operanag-2)

0 1 Z l 3 4 —[5 6 7
— o | i
T
Op1=0p2 | Op1>0p2 | GpI<OP2 | ~ | Op1#0p2 | OpIgOp2 | Op120p2 | uncon-
I e e dit_io nal
CMP FIELD, FIELDZ, FIELDT and FIELDZ2 are declared as BIN.
CMP BANKID, NAME BANKID and NAME are declared as STRG.
CMP BANKID, = CBANK’

Intermediate

code format:

Byte 1 0000';01 1L

—

operand-1 data-item-identifier-1

data-item-identifier-2

operand-2

Byte 1 is the operation code (X'06" or X'077)

L=1 operand-2 is a reference to a literal constant.

L=0 operand-2 is a reference to data-item-identifier-2,
array-identifier-2 or o formal parameter.

14.62
May 1975

CREDIT REFERENCE MANUAL

COPY

Syntax:

Type:

Function:

Description:

Condition register:

Example:

{ntermediate
code format:

Copy COoPY

[statement-identifieri COPY w1 data-item-identiic. | pointer
identifier-1,size-identifier,data-
item-identifier-2, pointer-identifize-
2

Srring instructon

{Cperana-4) - Operand-1
{Ponter- ipointar-
wientifier -2} identifier-1)

Starting at pointer identifier-2, the content of operand-4 is copied from
ieft 1o right to operand-1 beginning at pointer-identifier-1.

The r.umber of decimai digits or bytes to be copied is specified L/ size-
identifier,

This COPY is only possible between two decimai data items or &
string data items, Between two decimal data-items is copied on di
base. tn the other case it is copying on byte base.

The tirst characters of operand-1 and operand-4 are counted as ze o
when setting the pointer.

Not signmificant.
copy FIELDT, P1, LNGTH, FIELDZ, P2

Byte 1 1 OO0 O
operand- 1 data-item-identifier-1
operand-2 pointer-identifier-1
operand-3 size-identifier

operand-4

data-item-identifier-2

operand-5

pointer-identifier-2

Byie 1is the operation code {X'62")

operand-t and operand-4 are references to string
data items or decimal data items

operands-£,3.5 are references to binary data items.

al data items.

-_1
e

wgT

Nay TLTE

CREDIT REFERENCE MANU A

DELAY Da‘ay DELAY
Syntax: statement-identitier . 2FELAY U dats item-identifier
Type: Scheduling instiuction
Description: Execution of =2 running task 15 deiayed. The delay t' me is specified

in multipies of)0 msec in a binary dats item indicat :d by data-
iterr denidier.

Condition register: Urnchangec.,

Example: DELAY ' DELTIH
intermediate
code format: e e e s
:] 3 i §] g 0 0
- L
gotainal raference
| operand-1 I daisitem identifier J
e e

Bytes 1 ana 2 are filied by tne system,
Byte Z is a refarence 1o an external sysiem routine.
operand-1 is a reference 1o a binary data itern

1.4.64
May 1979

CREDIT REFERENCE MANUAL

DETFMT

Syntax:

Type:

Description: The format attached to the current task is detached.

Detach format

[statement-itenditier] «w DETFMT w

Format controf 1/0.

DETEMT

Condition

Register: Unchanged

Intermediate

Code Format: Byte 1 0 0 1 110 0 0 O
Byte 2 external reference

Bytes 1 and 2 are filled by the system.

1.4.65
May 1978

CREDIT REFERENCE MANUA.

DISPLAY

Syntax:

Type:
Description:

[staternent ides: b

DISPLAY

: . Coiate e afier.2
data-tem s i . et }

Format o -

Depending or: o0 o P T inw] opErations
on the curren? forqr o st oLy Tonraedd

controt
value

0

hittiak

[T " S : ; LG PG e ne
IV T TR A EaR T Ll B T A L N T SRS S S T a :"E”-?."E‘f’lced

Lar contained

By mats wer
in rhe b

30

starting at the e oo ot s R Gasitem

oY T T e number,

The FE-tnput Tisis erent tormat list are
dispiayed on the s i rhe appeopriaie positions,
using the FIK{ inpu: Pl nampericg sequience, Data-
iten idantifier 1 ealaes s bnrgr 2 dataitem containing
the FRI4npur e sumiber, fror wiich dispraying
starts. Data-iterm wienite 7 21515 a hinary data
item contatmang e SRyt Beid noinber at which
displaying stops Wier tas data cens containg zero all
FKl-input felds v s, stacting at FK-input
fieid numbear cortenen voine data (rem referenced by
data-itemadenic .o 1 The prospts sre not erased.
Both data-iteris may 2oninn Tee same line-number,

Similar to contror value 1, But the FilNP inout fieids are
now displayed, uaeg e FINP innet figid numbering,
The pronpis are (07 era

Simitiar ro contr oy valee 1 ot both FR1-input fields
and FINFP input Helds ora disnigved usng the general
field numbering

The prompis ars noi e gsed

Similar to control vaiue 3, but acrean 3 not cieared.
The last line rumber 3 e displaved may also be
indicated by a Htersl constant of the type binary.

1.4.56
Moy 1979

CREDIT REFERENCE MANUAL

DISPLAY

Condition register:

Condition mask:

Example:

Intermediate
code format:

Continued NDISPLAY
=0if OK
=2 1f ERROR
0 i z2 3 4 5 6 7
OK| —| ERROR | —| OK | = | ERROR | Uncon-
ditional

DISPLAY |10, LINE 3, LINE 12

rgyte 1 0 1 1 0O ¢ 0 L
Byte 2 external reference
operand-1 control value
operand-2 data-item-identifier-1
operand-3 data-item-identifier-2

Bytes 1 and 2 are filled by the system.
operand-1 is the control value.

operand-2 and operand-3 are references to binary data items.

iL=1 gperand-3 is a reference to a literal constant.
L=0 operand-3 is a reference to a data item.

7.4.67
May 1979

f

CREDIT REFERENCE MANUAL

DIV Divide Glv
Syntax: [statement-identifier] s« DIV data—item--identifier—T,{data-item-identifier-Z]
literal constant
Type: Arithmetic instruction
Function: {Operand-1} = {OQperand-2) - Operand-i
Description: Operand-1 is divided by operand-2 and the result is storec in

Condition register:

Example:

Intermediate
code format:

operand-1.

Operand-2 is unchanged. Both operands must be decimal or
binary. The remainder is lost. Division by zero resuits in overflow
and operand-1 is set to zero.

=0 if {operand-1} =0
=1 if (operand-1}) >0
=2 if {operand-1) <0
= 3 if overflow

DIV WORK,=D'+4
DIV FIELD, FIELD2

Byte 1 6 0o o o1 0 1 L

operand-1 data-item-identifier- 1

operand-2 data-item-identifier-2

Byte 1 is the operation code {X'0A’ or X'0B’).
L=1 operand-2 is a reference to a literal constant
L=0 operand-2 is a reference to data-item

7.4.68
May 1979

CREDIT REFERENCE mMANUAL

DLETE

Syntax:

Type:

Function:

Bescription:

Condition
register:

Example:

Intermediate
code format:

Delete DLETE

{statement-identifier] «u DLETE w data-item-identifier,pointer-
identifier,size-identifier

String instruction

delete {operand-1)
(pointer-identifier)

Starting at pointer-identifier, the contents of operand-1 are deletsd
from left to right,
The number of characters to be deleted is specified by size-identi!

The remaining characters at the right of the deletion are shifted
left. The number of shift positions corresponds with the content
of size-identifier. Space characters are inserted from the right.

Operand-1 must be a string data item. The first character of
operand-1 s counted as zero when setting the pointer.

Not significant.

DLETE DIELD,P1L1

Byte 1 o 1 T 0710 1 1T 0
operand-1 data-item-identifier-1
operand-2 pointer-identifier

operand-3 size-identifier

Byte 1 is the operation code (X'66°).
Operand-1 refers to a string data item.
QOperands-2 3 refer to binary data items.

1.4.69
May 1979

CREDIT REFERENCE MANUAL

DSC1

Syntax:

Type:

Description:

Condition
register:

Condition
mask:

Example:

Intermediate

code format:

DSC1

[statement-identific o, S0 Tas [NW,] datsset-identifier, {control value }

equate-identifier
data-item-identifier

/O instruction

This statement is useo o conTyol a data set indicated by data-set-
identifier.

The kind of control s specified by operand-3, the vatues of which are
found in the contro! code table 1 fsee below!,

indicated by operand-4 contains device
NVY, indicates that the no wait oplionis

The binary or deciniz! it tem
dependent controi infaraiation,
required.

= 0if 1/0 successfui {OK
= 1if End of file (EOF}
=2if Error (ERR}
= 3 if Begin or end of
device (REOD)
0 1 2 3 4 5 6 7
OK | EOF | ERR | BEOD | DK | EOF | ERR | UeO
ditional
DSC1 DSSOPC,OFF,ALLAMP
Byte 1 0 0 1 1 0 60 0 o
Byte 2 external reference
operand-1 W data-set-identifier
operand-2 control value
operand-3 data-item-identifier

Bytes 1 and 2 are filled by the system.

Byte 2 contains a reference to an external system routine,
W is the watt bit,

W=0 no wait

W=1 wait
Operand-1 is a reference to the relevant data set.

10/100 refers to the first data set.

Operand-2 is a hexadecimal inteuer, which corresponds

with the control code.
Operand-3 is a reference to a binary or decimal data item.

}4.72
May 1979

CRELIT REFERENCE MMANLAL

DSCH Continued oot :!
ot e
Contra Daraant Swpuficance Rec> . mended
Cade Tfavice i value identifier
no TRMT Load casselte/tape LOAD
04 S0P G Turn on indicator ON
oo Tianster narameters TRPAR
i) Transf. doc. param,. (PTS6371)
01 | OLSOF K} Tus off indicator OFF
o j Det status S5TAT
L —
!
02 OYv ! Erase display line ERASE
¥
1
06 Tv.OY Position voucher/ POE
‘ pass bhook. (Number
! of line stens) Position
1 {ocursor
PTSBE271, line number LINNG
0n oot Random delete DEL
oB Mo Do * Set time out value STIMO
SOP D& Set indicator flashing FLASH
QC (RETRE {zet currency {data) GCD
ap TS i Geteurrency lindex) GCD
TV.TJ : Set printsr parameters SETPAR
Ot E Aztach device/file ATTACH
Lwait bit must be set)
-..!.‘_.* S
oF ; { Detach device/file DETACH
: I lwalt bit must be set}
; e
10 b | Delete record and index IDEL
i - H
] !
1117 16.FE ¢ Feserved Tor future use
L ! S
DV dnnes sk e

da
-

Ay Tuly

CREDIT REFERENCE MANUAL

DSC1

TN b rye et
Lahrtiniied

Device dependent control informavior,

DSC1

Control Device Data rrery 2oty | Cwgmficance
code type i
00 TK ! Cassette without szquence
i cumbar on tape.
G | Casorite with sequance
Popumber on tane,
00 S0P L.1ght Sositions corresponding
01 Powertl: b one Dits in the binary
i aataitern are turned on/off.
i aather bignis are not aktered.
; Toe gl most panel light
i corresponds with bit 15 in the
l binary data tem,
00 DI/KI PTS 6241 and 6242, |
01 0 EIEIRE e
0 7 9 10 1112 13 14 i5 ' Light positions cor-
) responding with the
PTS 6232 and 6234 one bits in the bi-
. nary data item are
0 Lal 131 L2 L1 turned on/off. Other
o' 7 8 1o ti0l 11772 1317 145 lights are not altered.
Lamp L1 on each
device.
PTS 6233
L8 (L7 L6 | L] L4 S L2 LA
7 8 "9 "10 11712 12714 15
B=1, Bell is sounded
PTS 6331 at the keyboard.
0 BEIE
o'7 '"s ol mti2t 13T 1a 1!

PTS6236, PTS6271, PTSE272

| o L1l2f 3] tal s e
0 101t L1237 12 Mg
1.4.74

May 1875

CREDIT REFEREME Lo

[DsC1
R

Centinued

Controi Uevice ; Data-item contains; Significance
code ivos i
— o - mpmare

o0

00

L 7 8 15

< G

TASK Address

0 7 8 15

TC-Select
24Crasy

TC-poli address

Wisen issued from norma)
task

Wher
task

~eued from a DC-

Hadae card reader jiamos

R e
I
RN
S R PR

action

amo s turned on (input irom BCR)

not valid

T flasn lamps {input from PIN keyboard)

on. turn lamp off

if tamp

if famip

ilashing, not valid
uff, ne action

if larnp
¥ lams
if lamp

o1, o action
Hashing, turn lamp on

off, po action

Plamp
it lamp
it lamp

|
|

on, turn lamp off
Hashing. turn tarnp off
off, no action

¥
!
01 e i Set status
02 Oy [Numibaer A number of characters as |
: specified in the binary data.
, item, are erased from t-
; current cursor nsitio
g ; Only characters o the
! i same line where tne 2. o
! 1 is positioners can b .argaes
| ; The cursor e -
' originai poshoae, T
maximum numbar .
characters that o= Lo
f' mrasad is as folo
i
1

CREDIT REFERENCE MANUAT

' DSC1

Device dependent contrei information

Continued

DSC1

Control Device Data-item canfair
code type
[UNE NUN ':L\FV

06 DY 0 ; 2

08 TV number of iine steps.

e and column
w3 nothe binary

- cucsod hoime position.

“nes, B4 char per line
L, Ag char per tine)
AlE Lreeric version)
Sy per line

-1 A0 characters

ot 4 characters
STGT §E BrAases

i

ey

cunsiarsos ok by
goesr by wi tine feed
steps <7 s s ohe Lined, in the
binar. . pre-tem,

08 DL Logical record number.

afus chanacter s
"FREET on the
e +he logical record
cumibier af which isin
the by data tem.
Deinte 5 aniy silowed
an & record which is
under exclusive
WO
Exclusive 2ocess is re-
leasac otret “unction
(N chie g performed
T deieyt 4 the record
was 2rrady FREED

0B ,i0 Number

Set gmie i miutiples of 100 msec
for intrrtask communication,
attach /denuzh device/file or data
cotmmncation,

0B SOP,D! PTS 6241 and 6242

Kl

L1 jt2i L3t L4

LS

LG

tL.ight positions cor-

0 1

1.4.76
May 1373

12

13

1

1J responding with the
one bits in the binary
nata item are lit once
avery second.

14

CREDIT REFERENCE MANUAL

DSsC1 Continued

Device dependent contral information:

DSC1

Control Pevice Data-item contains: Significance
code type
PTS 6232 and 6234
0 L4 L3]L2 L1
78 9 10 11 12 13 14 15
PTS 6233
B LB L7 Wi L4 L3 L2 |
78 "9 10 1112 713 "14 15
If B=1, a buzzer is sounded at the keyboard,
OB SOpP PTS 6331:
DI
Ki [0 L3{L2 L1
78 9 10 11 12 13 14 15
Lamp L1 is the left
most lamp on each
PTS 6236: device,
L1 | L2 L3} L4 [Lb}iLE
011712713 +14 18
ocC DL Current Record Current Record Number of a data file
Number {Data record) is returned in the binary data item.
0D DL Current Record Current Record Number of a index
Number {Index record) file is returned in the binary data
item
0D TV, TJ
(PTSE371)

With this instruction it is possible to change one or more of the following
parameters:

Upper/Upper and Lower case character set {L}
National character variation (NCV)
Character pitch document/journal {CPD/CPJ}

The first two parameters are the same for both the journal and the document
station, but the character pitch may have different values for the two stations.
All the parameters may be set up in one request issued to only one of the
devices. This instruction is only intended for use where the parameters have
to be changed during the running of the application; if they are fixed, they
should be specified during system generation.

1.4.77
May 1379

CREDIT REFERENCE MANUAL

DSC1 Continued DsC1
Control Device Data-item contains: Signiﬁcahce
code type

The data items contains the parameter information, as follows:

11 12 15

L

NCV

CpJ CPD

where =L is the case indicator;

if zero, no change is required;

if set to eight only upper case characters are required. Any code in
the range /60—/7E is printed as the corresponding capital letter, If
set to nine, both capitals and lower case are printed; the height of

the capitals is reduced from 2.7 mmto 2.1 mm by using seven dots
instead of nine,

NCV is set within the range 0—A for the national character variations,

as shown in the tablet at the end of this DSC1 description.

CPJ and CPD are the character pitch far the journal and document
stations respectively; if set to zerg, no change is required.

The pitch may be 4, 5 or 6, corresponding with 15 char/inch,

12 char/inch, or 10 char/inch respectively.

If any of the parameters have an iliegal value, none of the parameters will be set,
and the request is completed with CR = 2 (Error).

Hf the printer is not operable for any reasan, the request is completad with
CR = 2 (Error); in this case the parameters are stored and sent to the printer
when power is restored, but in practise they should be sent again, untess an
XSTAT shows that this was the only cause of the CR being set to 2,

OE

Number

attached.

1.4.78
September 1979

Attach a device oar file, with a time
out velue in the binary data item.
{Multiples of 100 msec).

Time out zero is aliowed; then
control is immediately given back
to the task which issued the
request. Statuscode indicates
whether the device or file is

0

CREDIT REFERENCE MANUAL

DSC1 Continued DSC1

Table of National Character Variations

-Character Codes
NCV Countries Upper case " Lower case
/231/40|/58 /BC /5D | /601778 17C| /7D | /7E
0 | Great Britain, Belgium .
Netherlands Elreql \ ! { ! }
1 | Germany, Luxemburg, o --
Austria, Switzerland " § Al Ot U a o u g
2 France, Switzerland, R a .
Belgium, Luxemburg £1a |8 S L
3 | Spain, Argentina, - . -
Venzuela £ @ t N { " } =
4 [taly, o . . 3 5 :
Switzerland £ 5 Cl|Eju}a O €& i
5 | Sweden, .) .
Finland # E|A] O Aj & a O] a ~
6 Denmark,] e
7 Portugal, ~ — ~
Brazil £ @Al ¢ O gl c] o~
8 | Yugoslavia celz|¢l 18] ¢elele]~
g USA, Canada, .
Australia SRR \] { | } ~
10 | Denmark , 0
Norway {2) #FI1EI &Rl 0| Al ¢l | ¢ 2)

Note : Use of a lower case character code when Upper Case only has been selected via
the DSC1 instruction will result in the equivalent upper case character being
printed.

1.4.79
September 1979

CREDIT REFERENCE MANUAL

DSC1

Continued

DSC1

Contol
code

Device
type

Data-item contains:

Significance

OF

Zero

Detach a device or file.
Time out value must be
Zero.

10

DL

Logical record

The data record and belonging
index records are deleted.

{The deleted data file records
will not be re-used in this
release).

The index file record is only
deleted when data-management
has read the data file record
correctly,

00

TV

Index value

With this instruction the
previously defined parameter
table is transferred to the
printer. The table has been

set up during system generation
or by BDSC2 with control code
X*11'. The data item must
contain the index value pointing
to the required parameter table.

When the document is positioned,
new parameters cannot be trans-
ferred until the document has
been released. if any of the
parameters have an illegal value
the station is not opened and

the instruction is completed

with bit O set in the status code.
This bit is also set if the station

is already open and the document
has been positioned.

1.4.80
September 1979

CREDIT REFERENCE MANUAL

DSC2

Syntax:

Type:

Description:

Condition
register:

Condition
mask:

Example:

Intermediate
code format:

Data set control two DSC2

[statement-identifier] v DSC2 wa[.NW,] data-set-identifier,
control value } data-item-identifier-1, data-item-identifier-2,
equate-identifier

size-identifier

1/Q instruction

This statement is used to control a data set referenced by data-set-
identifier, which is currently only the teller terminal printer PTS6371.
The kind of control is specified by the control value, which

currently can only be X'11',

NW indicates that the no wait option is required.
Data-item-identifier-1 refers to a binary or decimal! data item containing
control information to be passed to the device.

Data-item-identifier-2 refers to a string data item containing the
buffer information.

Size identifier refers to a binary data item containing the number of
characters to be transferred from the buffer,

= 0 if 1/0 successful {OK)
= 2 if Error (ERR)
= 3 if Begin or end of
device (BEOD)
0 1 2 3 4 5 6 7
0K ERR|BEOD|OK ERR | unhcon
ditional

DSC2 DSTP, SDOC, CONTR, BUFF, SIZE

0 314 7
Byte 1 0 0 1 1|10 0 0 0O
Byte 2 external reference
operand-1| W L data-set-identifier
operand-2 control value
operand-3 data-item-identifier-1
operand-4 data-item-identifier-2
operand-5 size-identifier

Bytes 1 and 2 are filled by the system.

Byte 2 contains a reference 1o an external system routine.
W is the wait bit.

W=0 no wait

W=1 wait

1.4.81
September 1979

CREDIT REFERENCE MANUAL

DSC2

Control
code X'11'

Continued DsC2

operand-1 is a reference to the relevant data set

10/100 refers to the first data set.

operand-2 is a hexadecimal integer, which corresponds with
the contro! code.

operand-3 is a reference to 2 binary data item

operand-4 is a reference to string data itern

Significance

This instructicn is used to define the print layout and size of a document,
by supplying a set of parameters describing the document. The number of
sets is specified during system generation, The different document para-
meter sets are held in a table in the system, and can be referenced by an
index having a starting value of zero for the first entry.

The first entry in the table is supplied with a set of standard parameters
for A4 unfolded documents, which may be used if required. These are
shown in a table at the end of this instruction description.

These parameters are in¢cluded during system generation, and this instruc-
tion is only used to redefine a parameter set during application running,
where a correction or change is nacessary. .

The number of characters to be transferred must be 14, 18 or 22, depen-
ding on the length of the parameter set to be replaced in the table (see
bzlow}.

Data item jdentifier-1 refers to a binary data item, which must contain
the index vaiue for the required table entry.

Data item identifier-2 refers to a string data item which must contain the
set of paramzters to be replaced in the tfable.

All parameters must be supplied in !S0-7 code format.

If any of the parameters are missing or have an incorrect value, the
request is completed with CR= 2 (Error), and the table in the system is
not updated,

Parameter table entries :

Parameter Length Range Unit

Type in bytes

DY 1 0-3

T0 1 0-9 10s
LS 2 06,10,12,15 1/60"
NL 2 G1-99

BL 2 14—09 1/6Q"
MA 2 01-80 1/80""
MF 1 1-7 1/60”
LM 1 0,1

CM 1 0,1

HP 1 0,1)

UE 2 15-82 1/5",1/10"
BE 2 £0,24-99 1/60"
DW/UL 2 40--97/01-40 1/60"/—
cw 2 00—-9%9 1/60"

1.4.82

September 1979

CREDIT REFERENCE MANUAL

DSc2

Continued DSC2

If DT=0, parameters UE onwards are not required.
If DT=1, parameters DW onwards are not required.
If DT=2 or 3, ali parameters are required.,

DT:

TO:

LS:

NL:

Document type.

0 = Unfolded sheet document with a minimum size of 50 x 110mm.
If this type of document is used, a simplified method of
positioning is carried out, but this is not as accurate as the
method used for other types. When using documents with a
height of less than 75mm, this is the only type allowed.

1 = Unfolded documents in general with a minimum size of
75 x 100mm. This is the normal type used for unfolded
documents.

2 = Vertically folded (passbook).

3 = Horizontally folded (passbook).

Note that it is possibie to print folded documents using

DT =0 or 1, but is this case the positioning is iess accurate, and it is
the responsibility of the application to see that printing is not
performed on the fold. In the case of vertically folded documents,
this means that each camplete line must be written with two EDWRT
or WRITE instructions to ensure that the print head is lifted over the
centre fold,

Timeout.)

0 = No timeout for document insert.

1-9 = the timeout required in multiples of 10 seconds. .If used,
the position document — will complete with bit 10 in the
return code if no docurnent has been inserted within the
specified time,

Line spacing. The distance between two lines, expressed in units

of 1/60” (0.423mm).

6 = 10 lines/inch.

10= 6 lines/inch.

12 = 5 lines/inch.

15 =4 fines/inch.

Number of lines. The number of evenly spaced lines on the docu-

ment. Note that, for horizontally folded documents, the area near

the fold is treated with the CW parameter (see below). The upper
limits of this parameter for different document types and line
spacings are as follows:

Document type

Line spacing 0,1 2*] 3
15 44 | 26 |32

12 b5 1 31 |40

10 69 | 37 |48

6 99 | 61 |80

* It is possible to have the same maximum limit on type 2
documents as for type 3, providing the document is thin and
folds easily; this will have to be tested before deciding on the
parameter to be used.

1.4.83
Septermber 1979

CREDIT REFERENCE MANUAL

DSC2

BL:

MA:
MF;

LM

CM:

HP:

UE:

Continued DSC2

Bottom Line. The distance between the bottom of the document
and the bottomn line, expressed in units of 1/60" (0.423mm). This
value must be in the range 14—-99 inclusive, which means that the
bottom line may be placed between 6 and 42mm from the bottom
of the document, See diagrams at the end of this description for
clarification.

Margin. The width of the margin expressed in units of 1/10”.,

Margin fine. The width of the fine margin expressed in units of
1/60°". The sum of MA + MF is the distance between the right-
hand edge of the document and the margin {left or right). The
rightmost pasition of a right margin is 8mm from the right-hand
edge of the document, and this corresponds to the sum MA + MF
=1, The laeftmost position of a left margin is 206.2mm from the
right-hand edge of the document, and this corresponds to MA = B0,
MF = 7. The left margin must not, however, be placed closer than
3mm to the left-hand edge of the document.

Left margin,

0 = Print with right margin.

1= Print with left margin.

Critical margin.

0 = No critical margin.

1 = Critical margin. This must be set if the margin or any text is
intended to he positioned closer than 6mm from the edges
of the document. In this case, the print speed is reduced
near the edges to prevent the head overrunning the document
edges. Note that for document type 0, it may not be necessary
to set this parameter to one, even if printing close to the edge;
this will have to be tested in each case,

High pressure,

0 = Normal print pressure.

1 = High print pressure, primarily intended for printing on
multiple sets of forms.

Upper edge. This is not significant for document type 0.

For document type 1, this is the distance between the bottom of
the document and the true upper edge, expressed in units of 1/5”
(6.08mm). As the limits for this value are 15—63, this means that
a documeant with a height of 75mm to 316mm can be used. See
alsa the diagram at the end of this description for further
clarification,

For document type 2, this is the distance between the bottom of
the document and the upper edge of the pages, expressed in units
aof 17107 {2.54mm}. The normal 1imits for this value are 2582,
but note that the distance between the bottom and upper edge
must not be less than 60mm, and the total height of the document
must not be more than 210mm.

1.4.84
September 1979

CREDIT REFERENCE MANUAL

DSC2 Continued DSC2

For document type 3, this is the distance between the bottom of the pages
of the document and the upper edge of the pages, expressed in units
of 1/10" {2.54mm). The normal timits for this value are 48-82, but
note that the minimum distance between the bottom and upper
edges is 120mm, and the total height of the document must not
exceed 210mm, Horizontally folded documents with a distance of
less than 120mm from bottom to upper edge will need to be tested
specially, to check that the quality of the print is good enough. The
absolute lower limit for this parameter and this document type is 40.
This parameter is required to ensure that the print head is lifted as
the physical edges of the pages could otherwise jam in the grasp
mechanism.

BE: Bottom edge. This parameter is not significant for document type 0.
For all other document types, this is the distance between the bottom
of the document and the bottom of the pages, expressed in units of
1/60" {0.423 mm}. See the diagram at the end of this description for
further clarification. The limits of this value are 24—89 or zero, which
means that the bottom of the pages must be placed 10—42 mm from,
or in line with the bottom of the document. This is normally set to zero
for document type 1.

This parameter is required to ensure that the print head is lifted as the
physical edges of the pages could otherwise jam in the grasp mechanism.

DW: Document width. This is only significant for document type 2, and
: is the width of the document in units of 1/10” (2.564mm).

UL: Upper lines. This is only significant for document type 3, and is the
number of lines on the upper portion of a horizontally folded
document.

CW: Centre width. This is not significant for document types 0 and 1.
For document type 2, this is the width across the fold on vertically
folded dacuments, where the print head must be released as no
printing is permitted, expressed in units 1/60" {0.423mm).

For document type 3, this is the distance from the bottom line on
the upper portion of a horizontally folded document to the first
line on the lower portion of the document, expressed in units of
1/60" {3.423mm).

1.4.85
September 1979

CREDIT REFERENCE MANUAL

DSC2

Cantinued

DSC2

Diagram of pararmeters for document types 0, 1 (Unfolded document)

4mm_§ f /////////////////////////////////A////// /1
7/ %
. ! /]
7R |) Y
4— ' Left margin 1/10" + 1/60" Max, 200.2mm_ §
/. /
" | .
? f Right margin 1/10" + 1/60" Min. 5mrn———-—————-:-/ //_
2 s
/ i ! / o
% :) f ™
/ 1 ! / 1
. '
?}\“+—)Pm Zonm +,/// o
7 LM -
7B <
% AR
/ : 1 / @
/ b i / %D
fﬁ : ' // o
7 vl el
I LY B2
JEn : f =
/] I i / g’o
/i /I
7/ D S ;
1 A : / o
2.5 | U N/
sAS | P /N
i 4 ///////// L
100 ~ 210 mm

Y,

= Areas in which printing is not possible

1.4.86
Septernber 1978

CREDIT REFERENCE MANUAL

DSC2 Continued DSC2

Diagram of parameters for document type 2 {Vertically folded)

FOLD

1mn | j/////////////////////////////////// %
f A
77 29, 7
Z E%_Left margin 1/10" +Z{é)" Max. 206.2mm é g
) 77 7
% . Right margin 1/10" 4 /60" Min §mm———-—i—J/
7B 9.9 :% ~
7% 7 17
[/} | Contre width 1/6_(_3_"___21/ ; % ~
? .: Min. 9.5mm %? E % ci)
7 7/ I
7 %% v &
8 %7 178
7B 77 .4
o ?/ RAE
7B 7 AN 8
S 7 77 8 ke)
FREZE %7 RZE &
AR 7% A7F
Rl B 74 i fas A s
s | Va2 s A
Document width 1/10" (100 - 247mm)

er
[22 2 22 /ﬁ;‘: Areas in which printing is not possible

1.4.87
June 1979

CREDIT REFERENCE MANUAL

DsSC2 Continued DSC2

Table of National Character Variations

-Character Codes
NCV Countries Upper case Lower case
f231/431/88| /SC /DY /601 /7B /7C1 /7D /7E
0 | Great Britain, Belgium . B
Netherlands £ @ [\] { l }
1 Germany, Luxemburg, N - - -
Austria, Switzerland #18|AjOIU are d
2 | France, Switzerland, \ o . . .
Belgium, Luxemburg £ 14 G| § € Uil
3 | Spain, Argentina, - . . _
Venzuela £ @ (N] { n }
4 {taly, o
Switzerland £ 5 c E v d o € |
5 | Sweden, . . N
Finland # E|A] O A} é a) a
6 Denmark, © N
Norway (1) Elelsa) e A) P4
7 Portugal, . - ~1 _
Brazil £ @ A ¢ a d ¢ 0
8 | Yugeslavia elZIEl el S ¢l el ¢t~
USA, Canada, . . -~
Australia 1@l \] { | }
10 | Denmark , o .
Norway {2} # E}&A] O Al e | a ¢ | a

Note : Use of a lower case character code when Upper Case only has been selected via
the DSC1 instruction will result in the equivalent upper case character being
printed.

1.4.88
September 1979

