CREDIT REFERENCE MANUAL

1.3 Data Division

1.3.1 Introduction

The data division contains declarations which define the type, length and value of data
items used as operands in the program, tegether with declarations which define the
interface between the application program and the rest of the PTS System. The use of
directives in the data division is discussed in Section 1.2, The general layout of the data
division is shown beiow.

There must he one terminal class declaration for each terminal class used by the program.
The terminal class declarations may be made in any sequence, but they must all appear
at the start of the data division.

There must be one begin block declaration for each block identifier specified in the work
block declarations. The begin block declarations may be made in any sequence and must
appear after the last terminal class declaration.

| TERM etc. — Terminal class declaration(s)
CWB e1c.
TWB etc.
UWB ete. — Workblock declarations
DWSE etc.
SWB etc.
[DSET] etc. — Data set declarations
[FMTCTL] etc. — Format control /O declaration
ISTART] etc. — Start point declaration
IREENTER] etc. — Reenter point declaration
| STACK etc. - Stack declaration
BLK or DBLK — Begin biock or begin dummy block
declaration
BIN etc.]
BINI etc.
BCD etc.
BCDl etc. }.n - Data item declaration(s)
BOOL etc.
STRG etc.
. STRGI etc.

1.3.2 Terminal Class Declaration

The TERM dectaration identifies the terminal class with a unique two character task
identifier. i1t is followed immediately by the relevant work block declaration(s), start
point directive, data set declaration(s) and stack declaration.

1.3.3 Work Black Declarations

There may e a maximum of 16 work block declarations in each terminal class. These
declarations refer to the block identifiers specified in the begin block declarations (BLK
or DBLK).

1.3.7
Moy 1979

CREDIT R FLR 20 ANy

Several warw block decinranions iy e aipck identifier, This imities that
these woik Digoks ’ : wor ook wectaration. For terminal work
biocks, vwer w olocias this facility is mereiy a form of
progrun iy fat these work blocks are “overlayed’ or
Ve “arfort o writing out identical sets of
GrCisratton ! i : “weir blocks, more than one reference to
2 aoh coisinsn the neneiatton of @ single work block which an be
used o
Dumimy weor oredatiou g lerminal-, common-, yser-, or swappable
work bicgh in the s ral cioss,

Fanlock wdent - i s D more e oro work biock deciarstion, each dectaration
must always oeonpy he sarme posnuoe ralative 1o the other work block declarations in
the same fermunal Ciass 50 ne Deglarauon Reference Section (1.3.9) for an i'lustration

~f thig rui

"

1.3.4 DEEY 20Tk T AFENTER and STACK

The DSET deviar viop spec e theae darg sets ahich are 1o pe used in this rarminal
class, The coclars 2o s oononal.

The FMTCTL decaration md cates the format control 1/0 feature will be used in this
terminal class.

The STARNT duective indirates the start point for the task (s} associated with this
terminal class.

The REENTER directive can be used with rmearmory management, to refer to a closing
routine whioh we ne avocated when itis impossible to read a code segment in main
MEeMory nr i om sk,

Toe §TACK declarsiion specifies the size of the stack to be allocated to this terminal
class. The declaration is optonal,

1.3.5 Bugie: Bioex eciaration

1.3.5.1 (ene-a

The BLK or DBLK declarauon identifies the work block defined by the data item and
array declarations wtocr raliow,

Work blocks are used to define areas of mermory which may be used for input/output
bufters and/or work locations. Dummy wark bfocks do not occupy memory locations
but are redefining existing work pioeks in the same terminal class.

The instruction of 8 CREDIT program are held in as a single memory copy during
execution. However, the number of copies of work blocks which exist in memory
depends upon the configuration of the PTS System used by the application. The number
of work blocks needed depsnds upon the number of work positions and upon the number
of users who wifl operate these work positions. The work blocks are actually generated
when the application program is 'oaded into core,

They are generatac oy a part of TOSS System Software, the SYStem LOADIng program
{SYSLOD). The use of SYSLOD 15 d.scussed in part twa of this manual.

1.3.5.1 Terminal Work Biocks

One or more terminat wark hlocks (TWE; may be defined for each terminal class within
a program. A separate copy of the terminal work blocks wiil exist in memory for each
task activated for a particular terminal class. Each copy may be used only by its associa-
ted task and cannoft be used for exchanging data with other tasks,

1,32
May 1578

[

rOTEte this v
To gt rr s
v e

P
Wore o

One -

el

Tasks o o

COnt:

oLiAmt WS

:I';A' 3

thtegar oo
same torr
it oot

Thig s o

iy e

1.3.59% .

Adunimy o

between 1+

sy he defined for each terminal ~lass with a
i Blocks is genarated. They may be refer-
same block identifier is used in the work
war 21385 then the tasks belonging to *hese
S COTIMON work Diock

fx o ntioe cneratar, 1t may be necessary for the
raandormistion, e, cash accumulators, for each
"n-to-one relationship between work positions
oo b of users as work positions. The users may

e af cnemory are reawred which are associated with
s cians, These areas of memory are called user

<otk didtterent olock-identifier, may be defined for

Dok Biogk Y orney belong to a terminal class which
Lot Ak Ringiy, Furthermaore, a task may only refer to
© o LNE etruenion specifying the block identifier and
S mie i A ingdax identitier is a reference to a decimal
<ocoaresougsin w0 fferentiate between user work blocks of the
v Biock tve may be connected 1o one task.
s trs name wier workblock type at the same time.
~ormeare, 148 the responsibility of the application
“awhich may result from this type of access.

vworoek eferenced by the block identifier,

L+ wition starts at the beginning of the
1y 2ontinues sequentially,
- items hut is restricted to the size of

AT

CREDIT REFERENCE MANUAL

DB1 DBRLK
put BCD 8 coeteringes BT and BN2
STRU1 STRG 11 redelines 01, D2 and ST1

When data item DU is processed th o emory iocations for BN T and BN2 are Jsed as
decimal-data-item. The user must b ¢« of this situation when data-item BN or
BN2Z is processed afterwards, while 1t 5 t2 o protessed as binary data item. Dummy
work blocks may contain data-items 57 vy 0 3000, BN, BCD, STRG, BINY, ECDI or
STRGI. No initial values may he ass:aned 10 these data-items as no memory space is
allocated, For data-items of type cecimal w02 sreing, the length of each item must be
declared axpiicithy.

1.3.5.6 Swappable Work Bic: #- {5V E;

Swappable work blocks are disk 1zsident and in use similar to user work blocks. A
swappable work black type, differen: u:sutidentifiar, is read into memory onily when
it is attached to a task witr the LUSE instroction,

One copy of a swappable work bictk iywe may e present in main memory at the same
time and is allocated to one task as iorg a5 .11 srays in main memory. However, they can
be used Dy a multiple of tesks but not simuitaneousty. One area in main memory is
reserved for each swappable work biock type per task.

The swappabie work block is set under exclusive access on the diskfile $SWAP. Exclu-
sive access is released when the instruction UNUSE is executed for that particular work
block type, Data which is not frequently used can be stored in these work blocks. A
swappable work block is rewritten on disk after it is detached from the task, by executing
the UNUSE instruction. The work blocks are copies onto a disk file $SWAP, at system
joading time by the system loading program {SYSLOD).

File $SWAF must be a standard file { 3 type} with record length 400 and blocking
factor 1,

1.3.6 " Diata Item and Array Declarations

1.3.6.1 General
These declarations describe the data items and arrays of which the work blocks are
composed.

Data items may be binary coded decimai (HCD}, binary {BIN), boolean (BOOL) or
string (STRG). The mnemonics BCD, BIN, BOOL and STRG are known as “data
itern types’’. Arrays may be binary coded decimal (BCDI), binary (BINI) or String
(STRGI}. The mnemonics BCOIL, BINI and STRGI are known as "array types”. These
types should be distinguished from the “value types’ described below.

Any BIN or BINI declarations must appear at the start of the work block,

1.3.6.2 Data ltem Declarations
A data item declaration has the foliowing generai format:

. . BCD ‘ . e

|dentsf$eru{STRG}u data-item-specification

identifierws BIN {data-item-specification)
TRUE

. . T
identifier w BOOL o FALSE
F

1.3.4
taw 1979

CREDIT REFERENCE MANIUAL

Data-item-specification specifies the length, value type and value of the data item. It has
the following general tormat in both data item declarations and array declarations:

tength [[value-typel {'value’] |
value-type | 'value’]

‘value’
where:
Length is a decimal integer indicating the length of the item. 1t has the following
significance:
BCD and BCD} — Length indicates the number of {4 bit} digits in the data

item,

BIN and BiNi — Length need not be used. |f value-type is W, length may only
be 1. If value-type is X or D, length indicates the number
of (4 bit) digits in the data item. If value-type is C, length
indicates the number of {8 bit) 1SO-7 characters in the data
item.

Value-type is one of the characters D, W, X or C, and specifies whether value is to be
stored in memory as decimal (D), binary (W), hexadecimal {X) or string (C).
The following combinations of data item type and value-type are aflowed:

BCE and BCD! — DorX
BIN and BINI — C,D,WorX
STRG and STRGI — CorX
if vaiue-type 1s not specified, the following defaults are assumed:
BCD and BCD - D
BIN and BiNI — W
STRG and STRG! - C
Value specifies the value to be assigned to the data item. (f value is longer than

the specified iength will allow, then:

BCD, BCDI, BIN and BINI— value is truncated at the left. The least
significant 2digits are placed in the data item.

STRG and STRGI -- value is truncated at the right. The leftmost characters
in value are placed in the data 1tem.

If value 1s shorter than the specified lenath will allow, then:

BCD, BCDY, BIN and BINI — value is right adjusted and zero filled on the
left. :
STRG and STRGI — value is left adjusted and the data item is filled on the
right by repeating the rightmost character of value.

If value is not specified, then:

BCD, BCDi, Bil ard BIN! - value is assumed to be zera.

STRG zna STRGI — value is assumed to be 1SO-7 spaces.

Vajue mus* be written as a decimal number, a hexadecimal integer or a
character siing, depending upon value-type, The rules are as follows:

O - deomal number

X — nexadecimet integer

W~ decimal number

C -~ cheracter string

i35
May 19789

CREDIT REFERENCE MANUAL

Value will be stored in the data item in the following way:

BCD and BCD! — The digits in value are placed directly in the data item
without conversion. Each digit occupies four bits.

BIN and BINI — If value-type is W, vaiue is converted from decimal to
binary representation and then stored. If value-type is X or D, value is placed in the data
item without conversion. Each digit occupies four bits. If value-type is C,

the ISO-7 hexadecimal representation of the characters is placed in the data
item. One character occupies eight hits

STRG and STRG! — If value-type is C, the 180Q-7 hexadecimal representa-
tion of the character is placed in the data item. One character occupies eight
bits, if value-type is X, value is placed directly in data item without conversion.
Each digit occupies four bits. :

If length is omitted, the fength of tha data item is implied by the soecified
vailue-type and value.

Binary {BIN} data items have a fixed length of one word. For tiis type of
data item tength, value-type and value may all be omitted.

1.3.8.3 Array Declarations
An array declaration has the fallowing general formats.

rav-identifier L BCDI {dimension [, dimension]),
array STRGI data-item-specification [, ‘value'] ...

array-identitier . BINI .l dimension {,dimension])

[data-item-specification] [,'value’]....

The use of the data-item specification has been described above. If ther.: are fewer

“values” in data-item-specification than there are data item occurrences in the array,

the last “value” specified is repeated in the remaining data item occurrences.

if a value is definad, longer than the value defined by the first list element, it is

truncated according to the rules defined in 1.3.6.2.

“dimension” [or the product of the dimensions if there are two) indicates the number

of occurrences of the data item in the array. Each dimension must be a decimal integer.

A maximum of two dimensions is allowed.

When setting an index to refer to an array, the first occurrence in each ilimension is

always counted as one. For a two dimensional array both indices must lie in the range

1 to 255. A one dimensional array is not restricted in this way.

An initial value may be assigned to an array. This is done by tisting, in the array decla-

ration, the values to be assigned to each occurrence. Each value must af pear in quotes

and must be separated from the next value by a comma. For example:

TAB_,BINI(4,4}), ‘'1','2, '3, "4 's’,'6", ‘7", '8, '3, X’A’, X'B', X'C', X'D’, X'E’,
XJF', Xror

The Translator will set these vatues up in the array row by row from lef- to right, as

foliows:

0001 0002 0on3 0004
0005 0006 0007 0008
0009 000A 0060B 006C
000D 000E 000F 0000
156
May 7873

CREDIT REFERENCE MANUAL

The array will be referenced in the following manner:
TAB (X, Y} has the value 2 {where contents of binary-data-items, X = 1
and Y = 2)
TAB (X, Y) has the value X ‘A’ (where contents of binary-data-items,
X=3and Y =2)

1.3.7 Data Itemns

A data item is the most elernentary unit of data that can be used as an operand in a
CREDIT instruction. Data items are defined by data item or array declarations and are
refered to by their data item identifier or array identifier and dimension(s):

Type of declaration Type of reference
data-item-declaration data-item-identifier
array-declaration array-identifier {index-identifier-1

[,index-identifier-21)
In this Manual data items are referred to as ""decimal data items”, "string data items’” etc.
These data items may be defined by gither data items or array declarations {except for

boolean):

Type of declaration Type of data item

hinary-data-item-declaration
binary-array-declaration

binary-data-item
boolean-data-item-declaration boolean-data-item

ecimal- -item- larati , .
decimal-data-item-dec ron } decimal-data-item

decimal-array-declaration

string-data-item-declaration
string-array-declaration

Data items which have a speciai significance in a group of instructions have been given
special names. There are three data items in this category: index, pointer and size.

These names are used in order to simplify the descriptions of these groups of

instructions. However, the data items are heid in memory and operated uport in

exactly the same way as other data items.

An index is used in the |B and PERFI instructions.

It is used in these instructions to select a particular statement identifier or external
identifier from a specified identifier list. Index must always be defined as a binary

data item.

A pointer is used in the COPY, DLETE, EDIT, INSRT, MATCH and XCOPY instructions.
It is used in these instructions to point to an individual character in a data item. Pointer
must always be defined as a binary data item.

A size is used in the CGPY, DLETE, INSRT, KI, MATCH, NKI, WRITE, IREAD, IWRITE,
RREAD, RWRITE and READ instructions. It is used in these instructions to indicate the
size of the data item segment upon which the instruction is operating. Size must always be
defined as a hinary data item,

} string-data-item

1.3.7
May 1979

CREDIT REFERENCE MANUAL

1.3.8 Work Blocks

For each work block the translator generates a 16 or 256 entry pointer table maximum,
depending on the vaiue assigned to ADRMOD in the OPTNS directive. The entries in
each of these tables point to the non-boolean (i.e. binary, decimal or string) da‘a items
and arrays in the associated work block, Each non-boolean data item in a work block
occupies one entry in the pointer table, Each array occupies two entries. The number
of non-boolean data items and array declarations in each work block must be such that
the number of entries in the pointer table does not exceed 16 or 256.

The following combination is possibie (ADRMQ D=1}

4 data item declarations — requiring 4 entries
6 array declarations — requiring 12 entries
Total 16 entries

The pointer table is not used for boolean data items. This is because all boolean data
items in a work block are stored in the first word of that block. The maximum number
of boolean data items in a work block is therefore 16.

Memory for non-boolean data items and arrays is allocated in the same sequence as
the corresponding data item and array declarations appear in the CREDIT listing.

An example work bliock layout is shown below:

Sequence of data

items and arrays Boolean data items
is the same as

sequence of Binary data item
declarations

except for Binary data item

boolean data
items which are
all in the first
word. Binary Binary array
declarations are
always made at
the start of a
work block. Binary data item

String array

Decimal data item
ete.

1.3.8
May 1979

CREDIT REFERINCE MANUAL

The iast data item ozclared 'n @ work block may not have a start from a displacement
higher than 22767,

1.3.9 Declararion Reference

This section describes the syntax and use of each declaration. The possible values of
the variables in declarations is given in appendix 1. The notation conventions are
described in section 1.1.5.

139
Viop 1579

CREDIT REFERENCE MANUAL

BCD

Syntax:
Description:

Example:

—_—

Decimal data item [BCD

data-item-identifier L] BCD L] data-item-specification

Decimal data items are of variable length, varying from 1 to 510 decimal
digits (sign incfuded} and occupying a whole number of bytas,

memory representation:
R BCD 4'-9’ X' D00y’
S BCD X'BFF40 X'BFF400°

The sign is the most significant tatrad: [= negative, B = positive

The character 'F' in the above example denotes a “BCD space’”. This
character is treated as zero in arithmetic operations. However, if the
data item is edited and printed, BCD spaces will appear as blanks.
Under certain circumstances BCD spaces are generated by the MOVE
instruction,

1.3.10
July 1978

CREDIT REFERENCE MANUAL

BCDI

Syntax:

Description:

Example:

Decimal array BCDI

array-identifier LyBCDI s {dimension [,dimension]),
data-item-specification [,‘value’] - - -

Within the array all elements have a fixed size. The size for decimal
array elements may vary from 1 to 510 digits (sign included}. The size
of an element is derived from the first element in the list. A one
dimensional array may contain maximum 32767 elements. A two
dimensional array may vary from 1 to 255 elements per row and 1 to
255 elements per column.

{(Maximum 255*225 elements}

When an array is partly initialized, the last defined element wili be
copied until ati remaining elements are filled.

TAB1 BCDI {25),6D°'—94278’

TAB2 BCDI {3),"1,72,'%

TAB3 BCDI (2, 51, 600"
1.3.11

May 1979

CREDIT REFERENCE MANUAL

BIN

Syntax:

Description:

Example:

Binary data item BIN

data-item-identifier L_t BIN I_i {data-item-specification]

Binary data items are allocated full words and thus have a fixed length
of 16 bits. All binary data items within a block must be deciared before
the decimal and string data items and arrays.

The data item value must be within the range —32768 tc 327¢7,

memory representation:

A BIN w207 X '0014’

B BIN X'FF’ X ‘00FF’

c BIN 30100’ X '‘B10Y’

D BIN 2C’'NO X 'AE4F'

E BIN X ‘0000’
1.3.12

July 1978

CREDIT REFERENCE MANUAL

BINI

Syntax:

Description:

Example:

Binary array BINI

array-identifier «aBINI ws {dimension [,dimension])
[,data-item-specification] [,value’] . .-

Binary array elements are allocated full words and each element has a
fixed length of 16 bits.

The value of an element in the array must be within the range —32768
to 32767.

A one dimensional array may contain maximum 32767 elements. A two
dimensional array can vary from 1 to 255 elements per row and 1 to

255 elements per column. {Maximum 255* 255 elements). When an array
is partly initialized, the last defined element will be copied until all
remaining elements are filled,

TAB1 BINI (100},0°
TAB2 BINI (5), 1", "2, '3", "4", '8’
1.3.13

May 1979

CREDIT REFERENCE MANUAL

BLK

Syntax:

Description:

[———— e et o

Begin block BLK

block-identifier Lt BLK

Defines the beginning of a work block.

The three leading characters of the block-identifier should be unigue
since the identifier is truncated if longer. The block-identifier has to
correspond with the one specified in the work block directive (TWB,
CWB, UWB or SWB),

The begin block declaration must be followed by at least one data
item declaration or array declaration.

1.3.714
May 1979

CREDIT REFERENCE MANUAL

BOOL

Syntax:

Description:

Example:

Boolean data item BOOL
TRUE
. , . T
data-item-identifier LI BOOL ! FALSE
F

The length of a boolean variable is always one bit. A value may be
declared by selecting one of the following:-

TRUE, T, FALSE or F,

TRUE or T corresponds with "1’ and FALSE or F corresponds with
“0”. The default value is always FALSE {zero}.

Boclean variables may not be indexed.

FLAG BOOL TRUE

1.3.15
July 1978

CREDIT REFERENCE MANUAL

cws

Syntax:

Description:

Example:

Common work block

LI CWB |_| block-identifier

CcCwB

The block-identifier refers to a begin biock declaration {(BLK}. The
three leading characters of the block identifier must be unique. The

identifier is truncated if longer.

The same block-identifier may be used in different terminai classes. If
this is done the comman work block declaration must always occupy
the same position relative to the other work blocks in the same terminal

class.

A common work block is only common for those terminal classes in

which it is defined.

Legal:
TERM AD
CWwB A
TWB B
UWB C

TERM BO
CWB A
TWB D
UWB E

1.3.16
July 1978

Hiegal:
TERM AQ
CWB A
TWB B
UwB C

TERM BO
TWB D
UWBE
CWEB A

CREDIT REFERENCE MANUAL

DBLK

Syntax:

Description:

Begin dummy block DBLK

Block-identifier u DBLK

Defines the beginning of a dummy work biack. The three leading
characters of the block-identifier should be unigue since the identifier
is truncated if longer. The block-identifier has to correspond with the
one defined in the DWB directive. {block-identifier-1).

This begin dummy block declaration must be foliowed by at least
one data item declaration or array declaration. It serves to declare a
redefinition of a work block,

13717
May 1979

CREDIT REFERENCE MANUAL

DSET

Syntax:

Description:

Example:

TOSS Device type:

CR
DC
DG
bl

DL
DN
DY
GP

Data Set DSET

data-set-identifier o DSET w FC = file-code
[, BUFL = decimal-integer]
[, DEV = device-typej
[, BUFDS = data-set-identifier]

A data set is an |/O device. Particuiar data sets may only be accessed
from a task if the task belongs to a terminal class containing a DSET
declaration for that data set,

The same dataset declaration may be used in different terminal
classes. If this is done, the dataset declaration must always occupy
the same position relative to the other dataset declarations in

all terminal classes in which it is used.

The keyword parameters FC, BUFL and DEV may be written in
any sequence. They have the following significance:

BUFL Buifer length. If this parameter is present
a fixed buffer is allocated.
The parameter value is a decimal integer
giving the length in characters,

BUFDS Buffer data set. {f this parameter is present,
the preceding buffer length (BUFL) will be
shared with the data set buffer indicated by
the data-set-idientifier after BUFDS. The
buffer size must be smaller than the shared

buffer.

DEV Device type. Parameter value consists of two
fetters (see following device type list).

FC TOSS file code. Parameter value consists of
two hexadecimal digits {see following file
code list).

Any unrecognized keywords are ignored.

PRT - DSET FC =40, DEV=LP, BUFL=120

OWNER DSET FC =32, DEV =TV, BUFL = 100

SHARE DSET FC =31, DEV=TR, BUFL = 35,

BUFDS = OWNER
Meaning:
Card Reader
Data Communication
Graphic display
Indicator disptay
i_ogical disk file
Nurneric display
Alphanumeric display {VDU)
General printer

1.3.18
July 1978

CREDIT REFERENCE MANUAL

DSET

TQSS Device type:

i
10
KA
Kl
KN
LP

Recommended TOSS File codes :

{hexadecimal)

10

11

12

13

15

20

25

30

30, 31, 32
40

41

50

60

70

80

90
AQ, BO-B3, B6
CO—CF
DO

D1
FO—FB
FC—FF

Continued DSET

1.3.19

Meaning:

Intertask input
Intertask output
Alphanumeric keyboard
Keyboard indicators
Numeric keyboard
Line Printer
Magnetic Tape {1/2 inch)
System Operator's panel Switches
System Operator’s panel lamps
Cassette Tape
Teller terminal printer :
Journal print station
Teller terminal printer :
Tally roll print station
Teller terminal printer :
Voucher print station
Typewriter

Meaning:

System operator panel-in,
System operator panel-out.
Cassette recarder nr, 1
Cassette recorder nr. 2
Remote line test

Keyboard

Reserved for future use.
General Printer.

Teller printer {TJ, TV, TR)
Signal display

Numeric display

Character display

Data communication
Magnetic tape

Line printer

Card reader

Reserved for future use
Data management disk files
Inter task communication-input
Inter task communication-output
Reserved for system
Reserved for user

May 1978

CREDIT REFERENCE MANUAL

DWB

Syntax:

Description:

Example 1:

Example 2:

Dummy work block [[wB

u DWB 1 bltock-identifier-1{block-identifier-2)

Block-identifier-1 refers to the begin dummy block declaration
{DBLK}, where block-identifier-2 rafers to a work block declared
in the same terminal ciass, which wiil be redefined.

The three leading characters of both block identifiers must be
unigue. The identifiers are truncated if longer. The san:e block-
identifier-1 may be used in difterent terminal classes. 1% this is
done the dummy work block declaraticn must always occupy
the same position relative to the other work blocks in the same
terminal class.

Twe 81
DWB DB1{TB1)

TB1 BLK

DB1 DBLK

Legal
TERM AD
TwB TB1
TWB TB2
DWB DB2 (TB1)

TERM BO

TWB TB1

TWB TB4

DWB DB2 (TB1)

Hiegal

TERM AD

TWB T8B1

TWB TB2

DWB DBZ2 {TB1)

TERM BO

TWB TB1

DWB DB2 (TB1!
TWB TEB3

1.3.20
July 1978

CREDNIT REFERENCE MANUAL

FMTCTL

Syntax:

Description:

Example:

Format control 1/0 FMTCTL

INDS=data-set-identifier,
OUTDS=data-set-identifier

QUTDS=data-set-identifier,
INDS=data-set-identifier

= FMTCTL

A format control 1/0 declaration, must follow the data set
declarations immediately.

it specifies that this terminal class will use the format control
[/Q feature.

Data-set-identifier after INDS specifies the input device and after
OUTDS the output device, used for format controlled 1/0,
FMTCTL and referenced «ata sets must be in the same terminal
class.

DSKB DSET FC =20, DEV=KB

pSDY DSET FC =50, DEV=DY, BUFL =290

DSGP DSET FC =30, DEV =GP, BUFL =90
FMTCTL INDS = DSKB, QUTDS = DSDY

1.3.21
May 1075

CREDIT REFERENCE MANUAL

STACK Stack STACK

Syntax: L STACK LI size

Description: Allocates a user memory stack,
Size is a decimal integer indicating the size of the stack in bytes. If the
stack declaration is omitted a default stack size of 128 bytes is allocated.
This declaration should occur after the START or REENTER declara-
tion.

1.3.22
May 1979

CREDIT REFERENCE MANUAL

STRG

Syntax:

Description:

Example:

String data item STRG

data-item-identifier t_] STRG L data-item-specification

Strings are of variable length and occupy a whole number of characters.
The length varies tfrom 1 to 4095 characters.

memory representation:

ALL STRG 7'HEADING' X'48454144494E47"

BTA STRG B8X'42455441' X'42455441"

BET STRG 4'BETA’ X'42455441’

F1 STRG 5C'AB’ X'4142424242

F2 STRG 5C'ABCDEF" X'4142434445'
1.3.23

Juh 1878

CREDIT REFERENCE MANUAL

STRGI

Syntax:

Description:

Example:

String array STRGI

array-identifier LI STRG! LI (dimension [,dimension])
,data-item-specification [,'value’]

Within an array all elements have a fixed size. The size for a string array
element may vary from 1 to 4095 bytes. The size of an element is
derived from the first element in the list. A one dimensional array may
contain maximum 32767 elements. A two dimensional array may vary
from 1 to 255 elements per row and 1 to 255 elements per column.
{(Maximum 255%2565 elements). When an array is partly initialized, the
last element will be copied until all remaining elements are filled.

TAB1 STRGI (10, 10}, 32C" "
TAB2 STRG! {10).40C
1.3.24

May 1979

CREDIT REFERENCE MANLIAL

Syntac:

Description:

Example:

Swappable Warkblock

s SW8 o block-identifier.

SWB

The block-identifier refers to a begin block declaration (BLK}, The
three leading characters of the block-identifier must be unique. The

identifier is truncated if tonger.

The same block-identifier may be used in different terminal classes. If
this is done the swappable workblock declaration must aiways occupy
the same position relative to the other workblocks in the same terminal

class.

A task can only access a swappable work block after the USE instruction

has been executed by that task. It can be detached from the task by

executing the UNUSE instruction.

Legal: Itiegal:
TERM AQ TERM AOD
CWB A cwB A
TWB B TWE B
uwg ¢ UwB C
SWB D — SWB D —
TERM BO TERM B0
CWB E CWB E
TWB F TWB F
TWB G SWB D -—r
SWE D -—- TWB H
7.3.25

M 1829

CREDIT REFERENCE MANUAL

TERM Terminal cfass TERM

Syntax: L TERM ., task-identifier

Description: This declaration followed by a maximum of 15 work block declarations
describes aclass of terminal,
The task identifier must consist of a letter followed by a digit or a
letter.

Note: Task identifier is the same as the task identifier specified at
system loading time. (SYSLOD)

1.3.26
May 1879

CREDIT REFERENCE MANUAL

TWB

Syntax:

Description:

Example:

Terminal work block

t 1 TWB L. block-identifier

TWB

The block-identifier refers to a begin block declaration (BLK). The three
leading characters of the block identifier must be unigue. The

identifier is truncated if fonger.

The same block-identifier may be used in different terminal classes. If
this is done the terminal work block declaration must always occupy
the same oosition relative to the other work blocks in the same terminal

class.

Legal:

TERM AD
CWB A
TWB B
UwB C

TERM BO
CwB D
TWB B
UWBE

1.3.27
May 1979

lllegal:

TERM AD
CWB A
TWB B
uwB C

TERMBO
CwB D
UWBE
TWB B

CREDIT REFERENCE MANUAL

UwB

Syntax:

Description:

Example:

User work black

I UWB LI block-identifier

uwB

The block-identifier refers to a begin block declaration (BLK). The
three |eading characters of the block identifier must be unique. The

identifier is truncated if longer.

The same block-identifier may be used in different terminal classes.
If this is done the user work block declaration must always occupy the
same position relative to the other work blocks in the same terminal

class.

A task may only access a user work block after a USE instruction
has been executed by that task. t can be detached from the
current task by executing the UNUSE instruction,

Legal:

TERM AQ
CWB A
TWB B
uwe C

TERMBO
CwB D
TWB E
UwB C

1.3.28
May 1979

Hiegal:

TERM AD
CWB A
TWB B
uwB C

TERMBO
CWB D
UwB C
TWB E

