CREDIT REFERINCE MANUAL

1 THE CREDIT LANGUAGE
1.1 Introduction

1.1.1 General

The CREDIT programming language has been developed specifically for the Philips
Terminal System. it is an interpretive language.

The abject code generated from CREDIT is executed via an interpreter. A CREDIT
application program is normaily subdivided into a number of modules, each module con-
taining the statements necessary to perform a logically discrete processing step.

Modules are written and translated separately. Translation is the process of converting
CREDIT source statements into intermediate object code.
A CREDIT module is composed of three types of statement:

Directives

Declarations

frstrucitons
Directives direct the CRED!T Transtator during the production of intermediate object
code. They are not translated into object code but provide a framework within which
the programmer codes his program module.
Declarations are used to specify the type, length and value of data items used as operands
in the module. They are alsc used to define the interface between the application pro-
gram and the rest of the PTS System.
Instructions direct the input, processing and output of data. That is, they specify the
functions to be carried out by the computer and direct the sequence of events.
Deciarations and instructions are translated into the data and instructions which comprise
the object program. .

1.1.2 Terminal/Application Program Interface

1.1.2.1 Programs

CREDIT appiications programs are developed under DOS 6800 System Software. However,

they can be run only under TOSS System Software.

Under TOSS System Software only one application program can be held in memory.

Hence, ali the application processing for a PTS System is normally incorporated into one

application program (which may, of course, be subdivided into madules).

When the total size of the TOSS-monitor plus the CREDIT application exceeds 64K bytes,

different possibitities ¢xist to run such applications on the PTS range of computers,

a) For systems having a maximum main memory capacity of 64K bytes, the only
possibility is to use secondary memory (disk, fiexible disk). From this secondary
memory segments o1 the agilicatior are loaded into main memaory at runtime, when
necessary. This is under conntral of the memory management software.

b) For systems having o oxrendad main memaory, memory addressing upto 256K bytes,
the whole applicatien can be pleced in main memory. Extended main memory may
also be compined with o P secondary memaory,

A hardware featurs, b meniry management unit (MMLU)Y, enables memory address-
ing up to 256K bytes. This virtua!l storage technigue is implemented, with using
CREUIT memaory managemeant software

1.7.1
May 1370

CREDIT REFERENCE MANUAL

1.1.2.2 Daia Sets

A data set is a reference to an input/ou-uut device or diskfile an whicn an ap plication
program may perform mnput/output operstions. Mare than one «ata set may be con-
figured in a single device. For exar~~7z 2 '»urnad orinter, taily rolt printer and front
feed printer are combined in the PTS 8221 Taller Terminal Frinter However separate
input/output operations can be sartormed on each of the three daia sets,

1.1.2.3 Terminal Classes

in a PTS System there 1s normally 2 device configuration o1 seen of several work positions.
Each device configuration comprises one or mare Jdevices Some work pasitic ns may have
the same type of device configurar o, e.g. bank 1eiters would normally all use the same
type of configuration. There are narmatly other work aositions with differert configura-
tions. A group of similarly configured work positions, handiing die same tyn-es af rans-
action, is known as a terminal ¢lass

Because all work positions in a terming 2lass handle the same types of transztion,
identical program code is used to service each of these wark positions

1,1.2.4 Tasks

The CREDIT language enables the programmer 1o utilize the same set of CREDIT state-
ments for each work position in a terminal class.

This is achieved in the following manner.

The interpretive object code generated from CRED!T programs is re-entrant. This means
that a number of independent tasks can be achieved, all executing a single copy of the
application program. Each time data is sent from a work position a task is activated by
the TOSS Monitor, Thus, several tasks can be active at the same time for a number of
terminal classes.

The TOSS Monitor schedules the various tasks so that, at any time, several tasks may

be waiting for input/output to he completed, whilst other tasks are queued waiting for
execution. Though only one task may he executed at a given instant, the overall
impression is that all work pgsitions are being serviced simultaneously.

Each task is assigned a unique task identifier by the system. This identifier is derived
from the task identifier assigned to each terminal class by the programmer. With extended
main memory, the TOSS-monitor always resides in the first 64Kbytes of main memory,

1.1.2.5 Work Blocks

One or more work blocks must be assigned by the programmer to each terminal class.
These work blocks define areas of memory which may be used as working storage for
e.g. input/output buffers. Dummy work blocks redefine these areas of memary,
Swappable workbiocks are stored on disk and will only on request be loaded into main
memaory.

1.1.3 Program Design

1.1.3.1 Generaf

It is recommended that CREDIT programs be subdivided into modules. Each module
should contain the statements necessary to perform a logically discrete processing step.
There must be one main module in each program. This modute will contain a complete
data division headed by the DDIV directive, The remaining modutes must not define a
data division.

1.1.2
May 1578

CREDIT REFERENCE MANUAL

They should contain, instead, a DDUM directive followed immediately by the procedure
division directive PDIV,

The result of this is that a single date division will be used by all modules in the program,
At least one terminal class should contain a program start point definition.

The remaining modules of the program may contain the statements required for the
various types of transaction which the program is designed to process.

It is recommended that each module be devoted to the processing of a single transaction
type.

it is the responsibility of the programmer to identify individual transaction types within
a terminal class. This can be accomplished, for example, by testing a transaction code
keyed-in at the wark position by the user.

CREOIT programs may call subroutines written in PTS Assembler.

Certain system functions can be utilized only via Assembler programs. So it may be
necessary to write a mixed CREDIT/Assembler program. However, the main module
must always be writien in CREDIT.

1.1.3.2 Disk Resident Programs

This way of extending the memory will lead to a decreasing of the performance, compared
to memory extension with the memory management unit.

The code part consist of program segments just as for extended main memory, However,
here the number of memory pages are not sufficient to permit all segments to be igaded
in main memaory together. The tasks have, as for other type of system resources to
compete for main memory. The memary page replacing technique used is the least
recently used method. This indicates that when the load in the computer goes down

2.0. only a few tasks are running, these tasks will get a relatively large amount of main
memory each. In situations of heavy computer load the tasks will get only the amount
of main memory that is absclutely necessary. The dynamic allocation of main memory,
when the system condition change, is controlled and supervised by the operating system
itself, When looking at the code part it is important to consider the fact that the different
tasks are using the same code to a great extent. tn almost every application some or a lot
of tasks are doing the same work on different physical work stations. These tasks are
running the same instruction sequences but they are working on different and partly
unique data areas. The situation above is valid for terminal systems in general. However
the memory management technique is designed to handle also systems where the work
within the system is delegated to a number of unigue “‘specialist’’ tasks, each of them
running its own program sequence. The difference will be that the competition for main
memory will be harder in last-mentioned cases.

If no MMU is present the page size can be chosen to every value between sector size, 400
bytes, to 64K bytes, (aiso for flexible disk). The segmentation of the code part is made
at linking time and the segments consists of; interpretable code, literal pool and address
tables of the segment. Branches and subroutine calls will be solved automatically invisible
to the user. Every segment can be loaded anywhere in main memory {in a page) and this
decision is made by the system exclusively, Actually the only thing the user has to do is
to define the program segment size.

The fetch policy used is, to load the segment at the point of time when it is needed,
since it is very difficult to predict what segments will have to be loaded in a near future.

1.3
May 1979

CREDIT REFERENCE MANUAL

The replacement policy used e.g. the durision of which segment to overload waen a new
segment has to be loaded, is the Least hecentiy Used Method (LRU}Y. A queue is built up
telling which page in main memary to be replaced next time. This queue will Le dynamic-
ally updated by the system each <ime & 1as« s reactivated.

Note that the method described above implics that no dead-locks car appear, since there
is always place for a new segment in main memary,

To take care of error situaticns (disk no: gperabie, segment impossible to read) a special
entry is defined in the resident part o! 112 apphication program. (REENTER),

This virtual memo:y solution gives enaugh flexibidity to the programmer to optimize the
program execution. The most impartant thing :s the concept ot locality. When writing an
application for a virtual memory system, the programmer should try to pack the frequent-
ly used modules to as small number ot resulting segments as possible, In practice the
following things can for example be considered when writing an application:

— remove exception and errac-handiirg routimes from the main peth of the program.

— put all low Use rautines in segrments an thair own.

— routines should be praced close to the routines they call or are called by.

Following rules should be noted, improving the locality of the program:

— there will be empty areas in the end of the pages, due to impossibility to make all the
segments to the same size. The programmer, however, has the possibility to keep these
empty areas at a low level.

~ 1o have the possibility to build up and restructure the program segments, the program-
ming technique to be used should be strongly modular,

— literals are placed in the segments where they are used.

1.1.3.3 Extended Main Memory (up to 256K bytes)

When using extended main memory, a special hardware feature the memory management
unit {(MMU) must be present,

The page size in systems with memory management unit (MMU) may be chosen by the
user and should be a multiple of 1K bytes. This hardware feature allows a very fast
paging system compared to disk as paging device. The page size is selected during linking.
(TLK command, see chanter 2.3). The same rules are valid as mentioned for disc resident
applications,

1.1.3.4 Extended Main Memory and Disk Resident Programs

The same rules are valid as mentioned for disk resident applications. The memory page
replacement technique used, is the Least Recently Used Method, which will guarantee
that the memory pages most frequentiy used will most of the time be situated in main
memory,

1.1.4 Source Input Formar

A CREDIT source program can be read into the PTS 6800 System using one of a variety
of source input devices. Regardless of the input device used, the source data must have
the following form.

A source line is an 80-character card image. If the input device ailows records of

variable length {console typewriter) each record must contain no more than one source
statement. Input records longer than 80 characters are truncated, whereas shorter records
are augmented by spaces up to column 80.

1.1.4
May 1979

CREDIT REFERENCE MANUAL

The source line is subdivided into four fields: label field, operation field, operand field
and comments field, The label field begins in column 1. The fabel, operation and oper-
and fields are each terminated by a tabulation character (\} or at least one space each.
The operand field extends at maximum to column 71. If there are no non-space
characters follewing the Jabel {if any) before column 30, the rest of the statement is
interpreted as a comment. Columns 73—80 are ignored in the transiation process.

An asterisk in column 1 indicates that the source line is a comment. A source line
containing spaces in calumns 171 is ignored.,

If column 72 contains a *'C”’, the next line is interpreted as a continuation. For fixed
{ength input records, the operand field may be terminated by a comma (leaving spaces
up to column 72}, the next operand starting on the continuation line. If a value inside
quotes is split between two lines, all columns up to 72 are significant. For variable
length racords the operand field is terminated by two tabulation characters followed
by a “C’”* for continuation. In this case, the character positions from the first tabulation
character up to column 71 are not significant, and the operand field is immediately
continued on the next line.

In continuation lines, the label and operation fields should be empty.

1.1.5 CREDI!T Syntax Definition

The following symbols {Backus/Naur-Form) are used to define the syntax of CREDIT
statements:

= is defined as
() space
{] the syntatic items between these square brackets may be omitted
{ } select one of the items between the braces
alb select either a or b, This has the same meaning as braces. it is used

with tong strings.
ellipsis indicates that the last syntatic item may be repeated.

These symbols are used throughout the manual to define the syntax of CREDIT state-
ments. They are also used in the parameter syntax definition in appendix 1.

1.5
Mey 828

