CREDIT REFERENCE MANUAL

1.1.

1.2

CONTENTS
Date
PREFACE0h0cuv- tevecresrrensnsssesraacnsasees May
1. THE CREDIT LANGUAGE

intdeUCtiOH...«.-..a.-...-.-..-.-..-......o......' May
May

May

May

May

Directives escouesawss cerancase ssssssssaresavenseas May
. May
DDIV Datd DiviSiON s esssserssvnessracsoseeeasse March
DDUM Nata Division DUMMY seesensesecennnesesss May
EJECT FIBCl wvrseassnsvossssonssesscsancasses March
END FNd svecwrsesarces s ed e s et ot ar e s vosreseeMarch
ENTRY Eritry POINT 4 esnereaansnsnecnsessanesaressMarch
EQU Equate ser s ana P TR R R R R N AR May
EXT External ReferenCe wicevensasrvaros oo eaees March
IDENT 1dentification «-revsvecrnarovereeessesase My
INCLUDE include cocooveee a0 8 80 ¢ a0 0. du 00 a0t te s e et JUIY
LIST LiSt wrrmecancrs PPN [1] LY
NLIST No LiSt ereaearaas e das ey covesenosveseses July
OPTNS Opnons ----- R R R N R R AN A A A Mav
May

PDIV : Procedure Division seererescrsacsscansrnees May
PEND © Subroutine End sesesrsvecsassvnnsasanasss May
PFRMT Formal format fist parameter «+-eseseeaeessqssMay
PKTAB Format key table parameter ¢eoeeocenveccenss May
PLIT : Formal literal parameter ose.eoerecveseserssees May
PROC : SubroutineStart csssceeeseaaans eecusreess May
REENTER Reenter svveessoss seeraverasseeraesness May
START StArtPOINT wsvvsuvassssranseneseanrasres May

1.3.

Data Division

1.3.1. INTrOCETION oo s ravooornsaaaas sevecsensraess May

1.3.2. Terminal Class Declaration
1.3.3. Work Block Deciarations

1.3.4. DSET FMTCTL, START, REENTER AND STACK....May

1.3.5. Begin Block Declaration +...... evescsesareanns -May

1.3.6. Uiatz 1*ere and Array Declarations «.cveessoseveees..May

May

. May

1.3.7 Data Hems seveesonees Cereesoaa [P o ssss May

1.3.8 Wl BinGKS o s swrwarsssrarsrasnasonedreass ees May

1.3.9 Daclaration Referencecsvesvseeaas eseeesas May

BCD : Decimal Data ltem «eseeevacane July

gCOi ; Decimal Array sssssssassnssMay

BIN . Binary Data ltem eees. eevaesas July

SRRV : Binary Array sreercecrasnesss May

SLK . BeginBlock «sseeenscssrvnsan May

BOOL © Boolean Data ltem saerrevss + o0 July

Cwi . Common Work Block ss.eeaaves July

OB K © Beaint Dummy Block« May

6.0.1
May 1979

1979

1879
1979
1979
1979
1979
1979
1979
1977
1979
1977
1977
1977
1979
1977
1979
1972
1978
1978
1979
1979
1979
1979
1879
1979
1979
1979
1979
1979

1978

1979
1979
1979
1979
1979
1979
1979
1979

1978
1979
1978
1879
1979
1978
1978
1979

Page
0.0.0.

N R e T T T T R e e e e e I R I I I B I

WN=00OR~NOON_WN=O

—_—

-—
w
-

— emd ol eeh smh wed -

phhbbehh BRRLRRER
T e s e OO aWN

T N QT i N S
TN CIYN e O

CREDIT REFERENCE MANUAL

Date
DSET DataSet sevevevrsssnanvese.s July
o May
DWB Dummy Work Block «vscevenn.. July
FMTCTL Format Control 1/Q sevaveace .o Mav
STACK S1aCK vsevsvrsvrvvsasrarsvas May
STRG » String Data ttem ssvvvvun..., « July
STRGI String ATray ¢essarcssianass oo May
SWB : Swappable Work Block: e evveaesn May
TERM : Terminal Class sesereseceeaeas May
TWB ¢ Terminal Work Bilock «a.c.a. v eee May
UwB User Work Block essevvevss o v s oo May
1.4. Procedure Division

14.1. INtroductionesvvsonnrsinannnssnas e May
1.4.2. INStructions ..uesvosvaeas G eeeearecans eeveses May
. . . May
May
May
May
. . May
143 Declarations wveeevvesvessvonsossnnsosoneas.May
: - May
May
May
; - May
144, Subroutine Handling o..0eeun.... soeesnsesasass May
A . i May
1.4.5 Attach/Detach a device /'file vateaessinesss May
1.4.6 Inter task communication evesess May
RO : May
1.4.7. Notation tascssnsassassesnsesarsarss May

1.4.8. Instruction Reference-
ABORT ABOrt 1O reqUEST + v v eveevsresas May
ACTV Activate < vavesae rersevscseses May
ADD DA csiesseiendeii i e eeas . May
ASSIGN Assign data file ceeeveeececaasss May
. May
ATTFMT : Attach FOrmat revecevsaoneesnes, May
B Branch e sveevoecoraces saenness May
BBEOD Branch on Begin/End Device........ May
BE Branchon Equal «+eveveuvansasss May
BEQF Branchon End Of File v v - vv s v v vnas May
BERR Branchon Error w.ovevvncenunnna, May
BG Branch on Greater v e vuevuevavevssas May
BL Branchon Less svevevsvesnsssas. May
BN Branch on Negative vevevueenn.... May
BNE Branch on Not EqualMay
BNECGF Branch on Not End Of File May
BNERR Branchon No Error v avevvn.. . esa May

0.02

May 1979

1978
1979
1978
1979
1979

- 1978

1979
1979
1979
1979
1979

1979
1979
1979
14979
1979
1979
1979
1979
1879
1979
1979
1979
1979
1979
1979
1979
1979
1979

1979
1979
1979
1979
1979
1979
1879
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979

Page

JE T A Y

Bovbwwwwib
BRI NI RIS A R RO B o —a
OO WUN—=-20OLW

-t b =3 ok ok =) =3 —}

R L e
el ol el b ok = 2 2 (D00] T B D N e

— e ol) ek md ek ek wed b ek el el e o o =3
WO WN=O

WN OO

NRANNRNDODRNRNDND =
D~ DN A

~ArbAAARSARSDSA
w

B Y P AP\ W (W W 'y
[9S 7]
)

1.4.32
1.4,33
1.4.34
1.4.35

CREDIT REFERENCE MANUAL

BNG
BNL
BNN
BNOK
BNP
BNZ
BOFL
BOK
BP

BZ
CALL
CB

CBE
CBG

CBL
CBNE
CBNG
CBNL
CLEAR
CMP
copPy
DELAY
DETFMT
DISPLAY
DIV
DLETE
DSCO

DSC1

DSC2

: Compare ..
T Copy eoeenn

Date

Branch on Not Greatera.s....... ... May
Branch on NOt Less e..seceesos.. May

: Branch on Not Negative +......... May
: BranchonNot OK ... vevnnnees

. May
Branch on Not PositiveMay
Branch on NOt Zero v .eovv esvcanes. May
Branch on Overflow May
Branchon OK ... verinnvs..May
Branch on Positive s« eeessaeses May
Branch on Zero s ceeveseeenreeoes May

. Ca” ----- PR I I AR N S ARy May

: Compare and Branch ««ceeoseeesea May
May

: Compare and Branch on Equal +«.... May
May

: Compare and Branch on Greater +... May
May

: Compare and Branch on Less ¢ «.+... May
May

: Compare and Branch on Not Equal « .- May
. May

: Compare and Branch on Not Greater- . May
. May

: Compare and Branch on Not Less ... May
C . .. May

Clear seeveeracncrnennreseranes May

srresnnssrarenereas May
L P O I R B N A R R N B R N N N May
Delay rsesenes eeseseases May
Detach Format e cvsvvvnieens e ee May
Display cecvrrvresree seesesnaraa May
May

Divide sruievevsvscunsesesasess May
Delete vvvuveaan cseverassraass May
Data Set Control Zero , ., eueueees. May
May

tessaaas saas May
May

May

May

May

May

Data Set Contro! One

Sept.
Sept.
Sept.
: DataSetControltwo Sept.

Sept

Sept.
Sept.
Sept.
Sept.

June

Sept.

June

Sept.
Sept.

0.0.3
September 1979

1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1879
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979

1979

1979
1979
1979
197¢
1979
1979
1979
1979
1979
1879
1979
1979
1979
1979
1979
1979
1979
1879
1979
1979
1979

Page

1.4.36
1.4.37
1.4.38
1.4.39
1.4.40
1.4.41
1.4.42
1.4.43
1.4.44
1.4.45
1.4.46
1.4.47
1.4.48
1.4.49
1.4.50
1.4.51
1.4.52
1.4.53
1.4.54
1.4.55
1.4.56
1.4.57
1,4.58
1.4.59
1.4.60
1.4.61
1.4.62
1.4.63
1.4.64
1.4.65
1.4.66
1.4.67
1.4.68
1.4.69
1.4.70
1.4.71
1.4.72
1.4,73
1.4.74
1.4.75
1.4.76
1.4.77
1.4.78
1.4.79
1.4.80
1.4.81
1.4.82
1.4.83
1.4.84
1.4.85
1.4.86
1.4.87
1.4.88
1.4.89
1.4.88A
1.4.898

CREDIT REFERENCE MANUAL

DUPL
DVR |
DYKI

EDFLD

EDIT
EDSUB
EDWRT

ERASE

EXIT
GETABX
GETCTL
GETFLD
GETID
GETTIME
IASSIGN

IB

IINS
INSRT
INV
IREAD
IRNEXT

IRWRITE
Kl

LB
MATCH

MOVE

MUL
MWAIT
NKI

PAUSE
PERF
PERF!
PRINT
READ

RET
RREAD

RSTRT

September 1879

Date

Duplicate s cevveevsvesnns sesss.. May

Divide Rounded + + v cvvesvenvanens May

Display Keyboard Input +..... +-.. May

May

Nay

: Editlnput Field =« -4 .. e saenns May

fiay

fay

Edit scoveasoansna aessaranrass May

Edit Substiing veeevesocenvcoess May

Editand Write erccavsssnssrone May

May

Sept.

Sept.

Eraseeeveansn rrsaenne st sanes May

May

D EXIt eseenanane svsees ceasrsaes May

: Getcurrent Input Field Number May

: GetControl Value ..o visvinnnnses May

: Getlnput Field ceres . May

: Get Task ldentifierouv. ..., ., May

: GetClock +u.un.. PP .. May

i Assign index File ,........ ceerees May

May

! IndexedBranch ,................ May

: Indexed insert ces et May

nsert rereraeseaaren ... May

Invert v ovevevaness re e e . . May

indexed Random Read May

indexed Read Next e oo May

May

Indexed Rewrite +.cvvvenan... wMay

Keyboard Input = reveevacrriorans . May

' May

D longBranch cevevvrcrsrvraranns May

: Match tesasras reeranrna .« May

May

MOVE errsvecrnecone cere e . » May

May

: MUIUP‘\/ seesr s s .e May

1 MultipleWait eececeneean. ereses May

Numberic Keyboard Input ««vscee.s May

May

PAUSE vscancrrovsnsnsacoansas » May

Perform .scecesmvanenvsvcennns May

: Indexed Perform +oovecenan eeves May

M o 110} SR cassvaeses May

Read ...cvverveonnerannncnnas May

May

Return + vt neinvennonsns eoees May

Random Readcc..use May

May

Restart freeraceen .o s May
0.04

1979
1979
1979
1979
1979
1979
1979
1879
1979
1879
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979

109

-
-
[ae}

—r —
—
N =t

413
4114
L1156
116
117
118
119
120

AT CT T TTES S

- el
MNNNN
W=

N N
-~ 5

W WL W WA N
NMbPbWN 2O

W W
q;

AhhbhsRANARRARPARRRAARASS
L) W
© 0

B R . T e =t gt S S i S W e Y e . I B e e

o P
N = O

CREDIT REFERENCE MANUAL

1.4.9.

Date
RWRITE Random WEite sseseesssssenses May
May
SB : ShortBranch sessssasccscesesns May
SET t SEtecrserercrsnranenasosnnas May
SETCUR : Set CUMSOr eseeescnsecsesceses May
SETTIME 1 SetClock cvcveecesorvneneness May
SuUB ! SUDLIECt ssveaecsssscacseeess May
SWITCH : Switch Task on same Level «4cv..o. May
TB : Testand Branch +.ccvcccccccens May
TBF 1 Test and Branch on False eees May
™T : Testand Branchon True «+vs.ees May
TBWD : Tabulate Backward «es2sc0.00... May
" TDOWN : Tabulate Down s=cecerovrececses May
TEST D TESt esvsrerscsvevescransesssss May
TESTIO : Test 1/O Completion se-e-vs.eca- May
TFWD : Tabulate Forward ssevs-cevensas July
THOME : Tabulate Home seesccesecarae. July
TLDOWN : Tabulate Left Down. sevvceosveans July
TLEFT . Tabulate Lef’(S r e s ettt ap s JUIV
TRIGHT : Tabulate nght D R Ju[y
TSTCTL: : Test Control Flag eeevaesssresan. May
TUP : Tabulatle Up cecesesececssonsas July
UNUSE » Unuse s ss s s s e s res et e sy May
UPDFLLD ! Update tnput Fiald. .. o uvcves as .. May
USE pUse L., e mserenene esess May
WAIT cWait L e eeee e, May
WRITE D Write LL....... seseraereea . ess May
May
Sept.
May
XCOPY Extended COpY . .vvuvesesesnns May
XSTAT txtended Status Transfer Call May
Declaration Reference recrrar e <. May
CON : Constantuuenu ceevenrves.. May
FBN
FBNN
FBNP
FBNZ Format Branch on Condition May
FBP
FBZ
FB FormatBranchvevveocns « -« May
FBF
EBT } Format Branch on False/True - May
FBN Format Branch on Negative+.... May
FBNN Format Branch on Not Negative May
FBNP Format Branch on Not Positive .+ « .. May
FBNZ Format Branch on Not Zero « May
FBp Format Branch on Positive « May
FBZ Format Branchon Zero May
FCOPY FormatCopy srssusasss May
0.0.5

September 1979

1979
1979
1979
1979
1979
1879
1979
1979
1979
1979
1979
1979
1979
1979
1979
1978
1978
1978
1978
1978
1979
1978
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979

1979
1979

1979

1979

1979

1979
1979
1979
1979
1979
1979
1979

1.4.177

CREDIT REFERENCE MANUAL

2.1,

2.3

Bate
FCW Format Control Word «vevseeve.vs May
FEOR Format End of Record v-+.av -t July
FEXIT FOrmat EXIt e sucenrauenen,ons July
FHIGH Format High Intensity July
FILLR Fill Repeatseescsrseesvocencanns July
FINP FormatInput e ecvvrovvriursosvans July
FKI Format Keyboard input «cesv.s. . July
July
FLINK Format Link secaseseana, - July
FLOW Format Low Intensity - ..-. trsoaaas July
FMEL Format Element +svvsessvvevess May
Juiy
FMELI Format Element Immediate -4 May
FMEND FormatEnd s+-vcvsvsaee o eenan May
FNL Format Next Line +.... eraerans . duly
FNUL Format No Underlining +» . e oow e Juiy
FRMT FOrmatl cecessvevssasaanas eeeeeaJuly
FSL Format Start Lingsveveevsocranss Juty
FTAB Format Tabulation «vreevrvs sasaena July
FTABLE Format Table Generation +eee.v-v.. May
FTEXT Format Immediate Text scasreseann Juty
FUL Format Underlining »vveseeeevns o duly
KTAB Key Table et eraeas . duly
PLIST : Parameter List trsass s May
2. PROGRAM TESTING
INtrodUction sesseveravmcssoranroacayaa feeseeraans .+ May
May
May
2.2, CREDIT Translator
2.21. Introduction «.oevvurvwercvnnans. teeesieneaune May
2.2.2. Running the Translator
2.23. Translator Listing eeseans Peeeaaeas seoes May
May
May
CREDIT Memory Management Linker
2.3.1. Introduction feneer e a e B e May
2.3.2 Bulldingup Segments v .vs e cnvrvsveorenacennnasn May
2.3.3. Running Linker «......vviiiiuinnas seerroan May
May
May
May
May
May
May
May
May
May

0.0.6
May 1379

1979
1978
1978
1978
1878
1878
1978
1978
1978
1978
1979
1878
1979
1979
1978
1978
1978
1978
1978
1979
1978
1978
1578
1979

1979
1979
1979

1979

1979
1979
1979

1979
1979
1879
1979
1979
1979
1979
1979
1979
1979
1978
1879

Page

.187

et
jes]
(s3]

1189
.190
.191
.192

.194
195
.196
197
.198
199
1.4.200
1.4.201
1.4.202
1.4.203
1.4.204
1.4.205
1.4.206
1.4.207
1.4.208
1.4.209
1.4.210

P e ma el e e ek e e
h-b-h-h-b-h:h-b-b-b-h-bb
-

w
[#5]

NN
[QU N |
W) —

2.2.1

22,2
223
2.2.4

2.3.1
23.2
2.3.3
2.3.4
2.3.5
236
23.7
2.3.8
2.3.9
2.3.10
2.3.11
2.3.12

CREDIT REFERENUF finNMusl

3. TOSS SYSTEM START

3.1. General +svrccsnccacnnen T T T

3.2. Loading prozedures .- viesnraas s essssssasee s renne
3.3, Program filg iayoul s evvee e vnsnsans

3.4, Configuration file - - v esearasersasravsnscornvencens

4. CREDIT DEBUGGING PROGRAM

4.1. Introduction . ceeee.. C e s d s s e e e e s s e et as s asnacas s
42 Running CREBUG coeioviavraccrnras eecrire o s aen
4.3. CREBUG INDt e v s v st ovsasaesanssanosrasenssassavanas

44, CREBUG OUIDUL vt it e e v et ravocsasnansrsesnsnanse

Go L..... S e r e r e s s e et b st et e e at ey

Hait ,....ovenn.... I
Open dataitem,.......
Open boolean data item _, |
LOoCK SBAMENT | L it s esereusssoencnonsessnannas
Unlock segment | . .o eoessanrosorsosacacesanssa
Loop through tran C et i s eer e e e e
Dump memeory T T T I e,
Proceed from trap: ., T
Open relocation register

LR N R R R R N L)

PR R A R B R B B N R N R R A A A

L2 -2

Open task control 2res /Condition register v v s o v s nvs oo craans
Settrac s h e s e e e s e
RV L= 8
Open memory Wortdh . ..o er e em e s

Bemove 11 e i s e v sm e s s n e
Open bvte ... u. ... it e ees e e st ae
Calculate .. . e s et i a e

o.0.7
May 187G

Date

May
May
May

May

May

May
May
fay
May
May
May

May
Pay
May
May
May
May
May

May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May

......

1979
1979
1879
1679
1979

1979
1979
1979
1579
1879
1979

1979
19:3
1e 7
1974
1979
1979
1979

Page

CREDIT REFERENCE MANUAL

APPENDIX A

APPENDIX B

APPENDIX

APPENDIX

APPENDIX
APPENDIX

F.1. tntroduction

: SCREEN MANAGEMENT

F.2. Using Screen Management Moduie

CREDIT SYNT2.. Dt 7o .
Ty
EXTENDED STAT.: HIp S oy
DRCROT cevcwer nu . L
DRDCO? : Y
DRDCIE e
DROCT7 e i e e e e e e :
DRDC22 S . . . Sy
DRICT ... C .
DRDYOT i e
DRGPOT L ue v i r e HERYY
DRICGT S) v'a.
DRKEO1 P I T T R I R T S v A
DRKKEEZ ... o . T
DRLPGT ., e . . g
DRMTOT .. e e e e en v . Fe
DRSOPOY, e e .
DRCTO1T ... eseivn.s e L iSay
DRTPOZ e e e e e . .o Moy
DRTPO3......... e e R ¥ P
DRTWOT s e it nar e e eas s e e May
TIODM e e e Wiy
Ay
ATTACH/DETACH vt vnoeerarans et May
: CONTROL WORD INFORMATION , “avy
STANDARD ASSEMBLER SUBRCUTINES Mgy
EMPTY Empty Test v ee v arans bee s e Mg
GETCW Get Conmrol Word v e v en i nweon o Nlay
FMOVE FOrmat Miue so s esaocnernnoeses . gy
ICLEAR Clear Data gm + v aven . ceaen s May
MASK D Mask Fun=tiom s rvsvsnvensas. Y,
TYPET T Type Ten e ae e Ce e e gy
: CHARACTER SET ISO—-CODE ... vw. ... coe. May

F.3. Communicaian netween Screen Manageseny

Module and Acalication ov e iv v sy

F.4. Key Tables use: by Soreen Management «. .. .

0.0.8
Mav 1978

STy

1979

1579
1979
1373
1579
1079

14975

1979
1679
1979
1978

ERve ISRy
oC o

<

wy gren g
— L

OO TDDDITO DO
D 00w T O La L) Ry -

U0 R0 W W
oo

e T S N G
=~ OB L RS e

il
R Ry
R = Ao oa

RiEnal

m
B pe i L
N~ O o~

CREDIT REFERENCE MANUAL

APPENDIX G

Date

May

May

F.5. El'rOFHE!nd”ng---------.-..-...-.... Mav

F.6. Control from Package to Application -«......May
F.7. Required Definitions outside Screen . " _

Management Module + s s ¢ e vvv s v s vveness May

F.8. Example of a coded Format +-«.-» ceveans May

July

: STANDARD CREDIT SUBROUTINES -crvvcre..- h;lay

STRINP : String Input earseteesernssnas July
July
STROUT : StringOutput +seeverrvscssaranseres July
July

APPENDIX H :OBJECT CODE FORMAT «..vvrvrvnrvnnnneas May

May
May

a.09
May 1879

1979
1979

1979
1979

1979
1979
1978

1979

1978
1978
1978
1978

1979
1979
1979

Page

F.4.3
F.4.4

nmm MM
e
R R N

III DOPO O
ooo oooo o

WhKh =

CREDIT REFERLCNCE MANUA .

1 THE CREDIT L ANGUAGE
1.1 Introduction

1.1.1 General

The CGREDIT nreogramming tanguage has been developed specifically for the Philips
Terminal System. It is an interpretive language.

The object code generated from CREDIT is executed via an Interpreter. A CREDIT
application program is normaily subdivided into a number of modules, each module con-
taining the statements necessary to perform a logically discrete processing step.

Maodules are written and transtated separately. Translation is the process of canverting
CREDIT source statements into intermediate object code,
A CREDIT module is composed of three types of statement:

Directives

Declarations

Irnstructions
Directives diract the CREDIT Translator during the production of intermediate object
code, They are not translated inta object code but provide a framework within which
the programmer codes his program modtle.
Declarations are used to specify the type, length and value of data items used as operands
in the module. They are alsc used to define the interface between the application pro-
gram and the rest of the PTS System.
instructions direct the input, processing and ocutput of data. That is, they specify the
functions to be carried out by the computer and direct the sequence of events.
Declarations and instructions are translated into the data and instructions which comprise
the object program.

1.1.2 Terminal/Application Program Interface
1.1.2.1 Programs

CREDIT applications programs are developed under DOS 6800 System Software. However,

they can be run only under TOSS System Software,

Under TOSS System Software only one application program can be held in memory.

Hence, all the application processing for a PTS System is normally incorporated into one

application program {which may, of course, be subdivided into madules).

When the total size of the TOSS-monitor plus the CREDIT application exceeds 64K bytes,

different possibilities exist to run such applications on the PTS range of computers.

a) For systems having a maximum main memory capacity of 64K bytes, the only
possibility is to use secondary memory {disk, flexible disk]. From this secondary
memory seqments of the apulication are loaded into main memory at runtime, when
necessary. This is under control of the memory management software.

b) For systems having on ey tended inain memary, memory addressing upto 256K bytes,
the whole aniiica:on can B placed in main memory. Extended main memory may
also be compinien with wsa of secondary memory.

A hardware featu. ., e mesiory management unit (MMU), enables memory address-
ing up to 256K bytes. This virtua!l storage technigue is implemented, with using
CREDIT memory managemant sottware

[
May 1879

CREDIT REFERENCE MANUIAL

1.1.2.2 Dara Sers

A data set is a reference to an input/su et device or diskfile on whicn an ag plication
program may perform input/output gperotions. Viore than one data set may be con-
figured in a single device. For exam:le a wurnal arinter, tatly roll printer and front
feed printer are combined in the PT5 6221 Teille: Terminat Frinter, However separate
npUt/output operations can be perlormed on each of the thres data sets,

1.1.2.3 Terminal Classes

{n a PTS System there s normatly @ dewvice conhiguration o1 escn of several work positions,
Each device configuration comprises one ar more Jovices. Some work positicns may have
the same type of device configurat.wit; e.g. bank v:llers would aormally all use the same
type of contfiguration. There are normally other work positons with differant configura
tions. A group of similariy configured work positions, handlipg the same tynes of trans-
action, s known as a terminal ciass.

Because all work positions in a teriminat class hand'e the same types of transecion,
identical program code is used to service each of these work positions

1.1.2.4 Tasks

The CREDIT language enables the programmer to utilize the same set of CREDIT state-
ments for each work position in a terminal class.

This is achieved in the foliowing manner,

The interpretive object code generated from CREDIT programs is re-entrant. This means
that a number of independent tasks can be achieved, all executing a single copy of the
application program, Each time data is sent from a work positien a tasi is activated by
the TOSS Monitor. Thus, several tasks can be active at the same ume for a number of
terminal classes.

The TOSS Monitor schedules the various tasks so that, at any time, several tasks may

be waiting for input/output to be completed, whiist other tasks are queued waiting for
execution, Though only one task may ke executed at a given instant, the overall
impression is that all work positions are being serviced simultaneousiy.

Each task is assigned a unique task identifier by the system. This identifier is derived
from the task identifier assigned to esch terminal class by the programmer, With extended
main memory, the TOSS-monitor always resides in the first 64Kbytes of main memory.

1.1.2.5 Work Blocks

One or more work blocks must be assigned by the programmer to each terminal class.
These work blocks define areas of memory which may be used as working storage for
e.g. inputfoutput buffers. Dummy work blocks redefine these areas of memory.
Swappable workblocks are stored on disk and wii! only on request be loaded into main
memory.

1.1.3 Program Design

1.1.3.1 General

it ts recommended that CRED!T programs be subdivided into modules. Each module
should contain the statements necessary to perform a iogically discrete processing step.
There must be one main medule in each program. This module will contain a complete
data division headed by the DDIV directive. The remaining modules must not define a
data division,

F.1e

May 1970

CREDIT REFERENCE MANUAL

They should contain, instead, a DDUM directive followed immediately by the procedure
division directive PDIV.

The result of this is that a singfe date division will be used by all modules in the program,
At least one terminal class should contain a program start point definition.

The remaining modules of the program may contain the statements required for the
various types of transaction which the program is designed to process.

It is recommended that each module be devoted to the processing of a single transaction
type.

It is the responsibility of the programmer to identify individual transaction types within
a terminal class. This can be accomplished, for example, by testing a transaction code
keyed-in at the work position by the user.

CREDIT programs may caii subroutines written in PTS Assembiler.

Certain system functions can be utilized only via Assembler programs, So it may be
necessary to write a mixed CREDIT/Assembler program, However, the main module
must always be written in CREDIT,

1.1.3.2 Disk Resident Programs

This way of extending the memory will lead to a decreasing of the performance, compared
to memory extension with the memory management unit,

The code part consist of program segments just as for extended main memory. However,
here the number of memory pages are not sufficient to permit all segments to be loaded
in main memory together. The tasks have, as for other type of system resources to
compete for main memory. The memory page replacing technigue used is the least
recently used method. This indicates that when the load in the computer goes down

e.g. only a few tasks are running, these tasks will get a relatively large amount of main
memory each, In situations of heavy computer (oad the tasks will get only the amount
of main memory that is absolutely necessary. The dynamic aliocation of main memory,
when the system condition change, is controlied and supervised by the operating system
itself. When looking at the code part it is important to consider the fact that the different
tasks are using the same code to a great extent. In almost every application some or a lot
of tasks are doing the same work on different physical work stations. These tasks are
running the same instruction sequences but they are working on different and partiy
unigue data areas. The situation above is valid for terminal systems in general. However
the memory management technigue is designed to handle also systems where the work
within the system is delegated to a number of unique *‘specialist’ tasks, each of them
running its own pragram sequence. The difference will be that the competition for main
memaory will be harder in last-mentioned cases.

If no MMU is present the zage size can be chosen to every value between sector size, 400
bytes, to 64K bytes, {also for flexible disk}. The segmentation of the code part is made
at linking time and the segments consists of; interpretable code, literal pool and address
tables of the segment. Branches and subroutine calls will be solved automatically invisible
to the user. Every segment can be icaded anywhere in main memory (in a page} and this
decision is made hy the system exclusively. Actually the only thing the user has to do is
to define the program segment size,

The fetch policy used is, 1o load the segment at the point of time when it is needed,
since it is very difficult to predict what segments will have to be loaded in a near future.

1.1.3
May 1979

CREDIT REFERENCE MANUAL

The replacement policy used e.g. the ducision of which segrment to overload witen a new
segrment has to be loaded, is the Least Recensiy Used Method {LRU}. A gueue is built up
telling which page in main memary ta be renlaced next time, This queve will Le dynamic-
ally updated by the system each time & task is reactivated.

Note that the method described above imphics that no dead-iocks can appear, since there
is always place for a new segment it ma-n memory.

To take care of error situations {disk ner operabie, segment impossible to read) a special
entry is defined in the resident pari of e application program, (REENTER).

This virtual memory soiution gives en-ujh tlexibility to the programmer to optimize the
program execution, The most important thing ts the concept of locality, When writing an
application for a virtual memory systerm, the programmer should try to pack the frequent-
ly used modules 1o as small number of resulting segments as possibie. In practice the
following things can for example be considered when writing an application:

— remave axception and erroc-bandiing routines from the main path of the program,

— put all low Use routines in segments on iheir own,

— routines should be piaced close to the routines they call or are called by.

Following rules should be noted, improving the locality of the program:

— there will be emipty areas in the end of the pages, due 1o impossibitity to make all the
segments to the same size. The programmer, however, has the possibility to keep these
empty areas at a low level,

— to have the possibility to build up and restructure the program segments, the program-
ming technique to be used should be strongly modular,

— literals are placed in the segments where they are used,

1.1.3.3 Extended Main Memory {up to 256K bytes)

When using extended main memory, a special hardware feature the memory management
unit (MMU) must be present,

The page size in systems with memory management unit {(MMU) may be chosen by the
user and should be a multipte of 1K bytes, This hardware feature allows a very fast
paging system compared to disk as paging device. The page size is selected during linking.
{TLK command, see chanier 2.3). The same rules are valid as mentioned for disc resident
applications.

1.1.3.4 Extended Main Memory énd Disk Resident Programs

The same rules are valid as mentioned for disk resident applications, The memory page
replacement technique used, is the Least Recently Used Method, which will guarantee
that the memory pages most frequentiy used will most of the time be situated in main
memory.

1.1.4 Source Input Forma:

A CREDIT source program can be read into the PTS 6800 System using one of a variety
of source input devices. Regardless of the input device used, the source data must have
the following form.

A source line is an 80-character card image. If the input device ailows records of

vartable length (console typewrtter} each record must contain no more than one source
statement. Input records longer than 80 characters are truncated, whereas shorter records
are augmented by spaces up to column 80,

1.1.4
May 1979

CREDIT REFERENCE MANUAL

The source line is subdivided into four fields: labe! field, operation field, operand field
and comments field, The label field begins in column 1, The jabe!, operation and oper-
and fields are each terminated by a tabulation character [\) or at least one space each.
The operand field extends at maximum to column 71, If there are no non-space
characters following the label {i* any} before column 30, the rest of the statement is
interpreted as a comment, Columns 7380 are ignored in the translation process.

An asterisk in column 1 indicates that the source line is a comment. A source line
containing spaces in calumns 1—71 is ignored.

{f column 72 contains a “C", the next line is interpreted as a continuation. For fixed
length input records, the operand field may be terminated by a comma (leaving spaces
up to cotumn 72}, the next operand starting on the continuation line. f a value inside
quotes is split between two lines, all columns up to 72 are significant. For variable
length records the operand field is terminated by two tabulation characters followed
by a “C" for continuation. In this case, the character positions from the first tabulation
character up to column 71 are not significant, and the operand field is immediately
continued on the next line,

In continuation tines, the label and operation fields should be empty.

1.1.5 CREDIT Syntax Definition

The following symbols (Backus/Naur-Form) are used to define the syntax of CREDIT
statements:

= is defined as
) space
[1 the syniatic iterns between these square brackets may be omitied
{1 select one of the items between the braces

alb select either a or b. This has the same meaning as braces. |1 is used
with long strings.,

eltipsis indicates that the last syntatic item may be repeated.

These symbols are used throughout the manual to define the syntax of CREDIT state-
ments. They are also used in the parameter syntax definition in appendix 1.

1.1.5
May 1979

CREDIT REFERENCE MANUAL

1.2 Directives
1.2.1 Structure Directives
The framework of a CREDIT module is constructed from the directives IDENT,
DDV, DODUM, PDIV, PROC, PEND and END. The use of these directives is
illustrated below:

IDENT
(DDIV (or DDUM)
The data division contains declarations which define the type, length and
value of data items used as operands in the program, together with declarations
which define the interface between the application program and the rest of the
| PTS System.

PDIV

The procedure division contains the instructions which direct the input,
processing and output of data. 1t also contains some declarations which must
be used in conjunction with certain instructions,

PROC
Subroutines contain instructions and declarations,
PEND
L Several subroutines may be written in one module.
END

The IDENT and END directives define the start and end of a module. They must
be the first and last statements, respectively, of the module.

The DDIV or DDUM directive defines the start of the data division. 1t must be the
second statement in the module. DOV is used in the main module of a program.
DD UM is used in all other modules.

The PDIV directive defines the start of the procedure division. The PROC and
PEND directives define the start and end of a subroutine.

The IDENT, DDIV (or DDUMJ, PDIV and END directives must appear once only
in each modute, The PROC and PEND directives may be repeated. However,
subroutines may not be nested. That is, twe or more PROC directives cannot be
written without an intervening PEND directive. Subroutines may, though, perform
other subroutines.

1.2.2 Linkage Directives

CREDIT modutes which have to be linked into an application program contain
references to statements or subroutines in other modules. In order to achieve the
correct inter-module linkages, entry points and external references must be
specified. The ENTRY and EXT directives are used for this purpose. They must
be written in the procedure division,

There must be at least one START directive for each program. When the

TOSS System is started {i.e. the TOSS Monitor is loaded and the application
program begins execution) a task is activated for each work position in the System.
The tasks are activated at the start points specified in the START directives of the
relevant terminal classes. The START directive(s) must be written in the data
division and must be specified as entry points (ENTRY),

1.2.1
May 1979

CREDIT REFERENCE MANUAL

If more than one START directive apucars in a terminal class only the first start point
will be activated when the system is starled. The other start points become pending.
They will be activated after the first task has executed an EXIT instruction, When
using memory management, the REENTE K directive refers to a closing routine in case
of a page fault or read error on disc. The statement identifier in this directive must be
declared as ENTRY in the module it is deiined,

1.2.3 Listing Directives

The directives LIST, NLIST and EJEC™ are used to controt the CREDIT listing during
the transiation process. They may be written in any part of the module. The OPTNS
directive must follow after the DDUM or DDIV directive.

1.2.4 Equate directive

This directive is used to equate an identifier with a value, When this identifier ic used

in an instruction the Transiator automatically replaces it with the specified value, i.e.

the instruction is translated as if the programmer had actually written the value in the
instruction.

The directive may be used free in the procedure division (PDIV}, but it shouid follow
the ENTRY and EXT directives.

1.2.5 Parammeter directive

The directives PFRMT, PKTAB and PLIT define the type of formal parameter, declared
in the heading of the subroutine and must be used in two byte addressing mode or when
a format table is used as formal parameter, or when in one byte addressing mode the
literal constant name, keytable name or formatlist name, does not begin with a $ sign.
These directives follow the PROC directive immediately.

1.2.6 Directive reference

This section describes the syntax and use of each directive. The possible values of the
variables in the directives is given in appendix 1. The notation conventions are described
in section 1.1.5.

1.2.2
May 1579

CREDIT REFERENCE MANUAL

DDIV Data Division DDIV

Syntax:) DDIV Lt [module-name]

Type: Structure directive

Description: Indicates the beginning of the data division of a module and causes a
page feed in the listing during translation.

If module-name is specified, the data division statements will be fetched
from the module indicated by module-name,

However, these data divisions will be entirely separate at execution time.
The use of common data divisions is achieved through the DDUM
directive.

No more than one module in a CREDIT program may contain a DDIV
directive. The remaining modules must use the DDUM directive.

1.2.3
March (877

CREDIT REFERENCE MANUAL

DDUM

Syntax:
Type:

Description:

Data division dummy

L DBUM I_l[moduievname}

Structure directive.

DDUM

Beginning of a data division is indicated and the data division state-
ments will be fetched from the module indicated by module-rname.

No object code is output during processing of the data division.

Note: A DDUM-module may contain declaration of data items.
The only difference between DDUM and DDV directives is,
when DDIV is declared the object moduies of the data division

are output on a /0 type file,

1.24
May 1979

