PDOS 2.4 DOCUMENTATION CHAPTER 9 PD0OS BASIC

CHAPTER 9
PDOS BASIC

Chepter 9 introduces you to PDOS BASIC. Although most
standard Dartmouth BASIC verbs are the same, many extensions
have been added to support industrial, scientific, and
business applications. File management and context strings
are easy to understand end very versatile.

9.1 BASIC PRIMER........ccccveennnnn Cernevecanaies ceera.9-3
9.1.1 AN EXAMPLE. .......cvuvunnns Coveenas creceone 9-4
9.1.2 EXPRESSIONS. ....... -
L2 T T 1 P - 4
9.1.4 ARRAYS......... Crreesconnons cossvoecesansas-9
9.2 BASIC DEFINITIONS........ Ceecnineenttsetssenoaoaosns 9-10
9.2.1 BASIC COMMANDS......... Sevscessevsonnennas 9-10
9.2.2 STATEMENTS. ... .ivivtiiiiiiieininocnnnens ..8-10
9.2.3 PDOS BASIC STATEMENT SUMMARY.............. 9-11
9.2.84 CONSTANTS.....ivvivinonneneconnccroavnnuas 9-13
9.2.5 VARIABLES......cccvvveiinnncncnns cecsesees 9-13
9.2.6 OPERATORS. . ..cvvcvvvrorrecnnnncnnscccaass 314
9.2.7 FUNCTIONS........ teesvesasarrasatecasssas .8-15
9.3 LINE EDITING......... feeiececueasecerenosacannonaos 9-16
9.4 BASIC STRINGS.....ccovvcuuencenans secenssesnaccene ..8-17
9.4.1 STRING ASSIGNMENT.......cvveennnvnonnnn ...9-18
9.4.2 STRING EXTRACTION......coitiienraconsane 918
9.4.3 STRING REPLACEMENT......coivreennnnnnnn. §-13
9.4.4 STRING CONCATENATION............ ceeens eos. 918
9.4.5 DELETE CHARACTER........... T Rl
9.4,6 INSERT CHARACTER........covniuvvcocrense..819
9.4.7 CONVERT TO ASCII.............. veeveoee ....9-19
9.4.8 CONVERT TO ASCII FORMATTED.............. ..9-19
9.4.9 CONVERT TO HEX........... crreons verreeae..9-18
G.4.10 CONVERT BYTE......cvvvvennnrenncecrnneans 8-20
9.4.11 CONVERT STRING............. Cererensaaaas 9-20

9.4.12 CONVERT ASCLIL TO NUMBER.......c.vvvennn.. 8-20



PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC PAGE 9-2

(CHAPTER 8 PDOS BASIC continued)

9.6 BASIC FILE MANAGEMENT.....cvovvevneecnnrnvecncnansns 9-21
9.5.1 SELECT AND LOCK TASK............ cearreess.8-22
9.5,2 SELECT FILE.......cc0vvennnns ceeees eeenss.9-22
9.6.3 WRITE TOFILE.....ccocvvvvennnnnnen cevess.9-23
9.5.4 READ FROM FILE.........ccvvnvvvnennene. ...9-23
9.5.5 POSITION FILE........cvvveeen crevee veseass 9-23
9.5.6 WRITE LINE......ccoveerevenncncaccnansans 9-23
9.5.7 READ LINE.......covvvvennnnnn vesasessesese 9-24
8.5.8 LOCK FILE.....covvvennerinnacenss ceeneess.9-24
9.5.9 FILE UNLOCK........... crensesans teereess.9-25

9.6 BASIC PROGRAM EXAMPLES.............. ... vessene cer..9-26
9.6.1 BASIC TASK LOCK.....covevceanaanas ceveeses9-26
9.6.2 BASIC SETFILE ATTRIBUTES......... ceeesess.9-26
9.6.3 BASIC CREATE TASK.....covveenen cessesnenne 8-27
9.6.4 BASIC ARRAY PASSING........ tecensscnnne ...9-28
9.6.5 BASIC DISK BACKUP......cvveenvernennnnnnes 9-29
9.6.6 FNPOP EXAMPLE......cvvieerinnreenncennnnns 9-30
9.6.7 BASIC MENUS.......coveveevevncnans conesens 9-31
9.6.8 BASIC STATUS LINE PROCESSOR........... ve0.9-33
9.6.9 BASIC INPUTS AND PROMPTS...... covesnseraas 9-35
9.6.10 ASSIGN CONSOLE INPUTS........ccvvvvennnnn 9-37

8.7 BASIC PROGRAMMING TIPS.......ccviuveneincniarannannn 9-38



PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC

9.1 BASIC PRIMER

Microcomputer interpreters are generally slow and not
competitive in performance wWith comparable compilers.
Despite this disadvantage, BASIC interpreters have been
implemented on almost every microcomputer available today
and are wWidely used for both business and scientific
applications. This wWide acceptance 1is due mainly to the
interactive nature of interpreters.

The PDOS BASIC interpreter combines performance and
interaction wWith a unique approach. PDOS BASIC pseudo
source tokens are parsed during program entry and not at
execution time. In other wWords, the evaluator executes
serially through the tokens, since they are stored in
correct Reverse Polish order. This is immediately evident
when a program is listed using the LISTRP command.

PDOS BASIC features:

~-Meaningful variable names
-Multi-statement recursive functions
-Function local veriables

-Extensive line editing commends
~Fast 48-bit floating point arithmetic
-11 digit accuracy

~Context oriented string primitives
-Full disk file interface primitives
-Standalone run module support

-CRU instruction primitives
-Assembly language 1inkage

-Color graphic primitives

-Speech primitives

-Variable, transfer, and execution trace
-Program chaining

~Formatted print commands
-Inter-task communication arrays
-Memory functions

-Time and date commands

-Logical operators

-Suspend task command

-Set and test event commands

Interactive interpreters

Reverse Polish pseudo source tokens



PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC

PAGE S-4

9.1.1 AN EXAMPLE

The system of two simultaneous linear equations in two
variables, ax + by =c, and dx + ey = f, can be solved if
(ee - bd) is not equal to zero. The solution is given by:

ce - bf af - cd
X S =——m——- y S =====—-
ae - bd ae - bd

1f (ae - bd) = 0, there is either no solution or there are
infinitely many, but there is no unique solution. Study the
program example toc the right carefully. In most cases, the
purpose of each line in the program is self-evident.

Several things are immediately apparent from this semple
program., First, the program uses only capital letters.
Second, each line of the program begins With a number.
These numbers are called line numbers and serve to identify
the lines, each of which is called a statement.

A program is made up of statements that are executed by the
computer. A program cen be entered in any order and the
computer sorts out and edits the statements into the order
specified by their line numbers.

Third, each statement starts, after its line number, wnith
an English word unless it is an assignment statement. The
English word denotes the type of statement. Spaces are used
to delimit variables and expressions but are not stored With
the program.

With this preface, let us examine the program step by step.
The first statement, 10, is a READ statement. It must be
accompanied by one or more DATA statements. When the
computer encounters a READ statement while executing your
program, it assigns values to the variables listed after the
READ statement according to the next available values in the
DATA statement.

In the example, variable A of line 10 is assigned the value
of 1 from the DATA statement of line 100. Similarly, B is
assigned a 2 and D a 4. At this point, the available data
in statement 100 is exhausted. The computer moves on to
line 110 and assigns variable E the value of 2.

Statement 20 is an assignment statement. The variable G is
assigned by the computer the results of the expression (se -
bd). (The '*' is used for multiplication.) In general, an
assignment statement gives the variable on the left side of
the equal sign the value of the expression on the right
side.

ax + by =c
dx +ey=f

LIST
10 READ A,B,D,E
20 G=A*E-B*D
IF G=0: GOTO 80
READ C,F
50 X=(C*E-B*F)/G
Y=(A*F-C*D)/G
70 PRINT X,Y
80 GOTO 40
80 PRINT "NO UNIQUE SOLUTION"
100 DATA 1,2,4
110 DATA 2,-7,5
120 DATA 1,3,4,-7

130 STOP

RUN

4 -5.5
0.66666667 0. 16666667
-3.6666667 '3.83333333
*ERROR 21 AT 40



P00S 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC PAGE 8-5

===z SR EEENEEasTTSsISTESETssssmssssomsssszssssoosssooos

i

(9.1.1 AN EXAMPLE continued)

1f G is equal to zero, the system has no unique solution.
Therefore, 1line 30 asks the question, "is G equal to zero?"
The statement is an 'IF' statement and sets an internal flag
TRUE for ‘yes’ and FALSE for ‘'no‘'. If the flag is TRUE,
then the computer continues executing the statement. The
computer would 'GOTO' line 90 and print on your console 'NO
UNIQUE SOLUTION'. Otherwise, the computer moves immediately
to the next statement.

The computer noW reads tnWo more values from the DATA
statements, namely -7 and 5, and assigns them to variables C
and F respectively. The computer can now solve the system
of equations. Note that parentheses must be used to
indicate that (C*E-B*F) is divided ' by G. Wi thout
parentheses, only (B*F) would be divided by G, nhich results
in a Wrong answer.

The computer prints the two results in line 70. Line 80
directs execution back to line 40. I1f there are additional
numbers in the DATA statements, then enother system of
equations is solved. This continues until there are no more
numbers in DATA statements, at which time an error is
reported.

Why is the program numbered by tens? The answer 1is that
the particular choice of line numbers is arbitrary, as long
as the statements are numbered in the order that the
computer is to follow in executing the program. The
statements could have been numbered 1, 2, 3, ... 13. This
is not recommended since later insertions would be
impossible if you forget a 1ine when entering the program.

9.1.2 EXPRESSIONS

The computer can perform many arithmetic operations: it can
add, subtract, multiply, divide, extract squere roots, raise
a number to a power, find the sine of an angle, etc. This
is the primery function of a computer.

Expressions are similar to those wused in standard
mathematical calculations, with the exception that all BASIC
expressions must be written on a single 1line. Operator
precedence is observed in formulating expressions. If you
enter ‘A + B * C ~D', the computer raises C to the power D,
multiplies the result by B, and then adds A to the product.
1f this is not the intended order, then parentheses must be
used to group the operations.



PDOS 2.4 bDCUHENTATION ) CHAPTER”3- PD0S BASIC

(9.1.2 EXPRESSIONS continued)

The order of priorities is summarized as follows:

1. The expression inside the parentheses
is evaluated before the parenthesized
quantity is used in further
computations.

2. In the absence of pearentheses, the
computer first evaluates the unary minus
operator followed by powers, division,
multiplication, subtraction, and finally
addition.

3. In the absence of parentheses in an
expression involving operations of the
same priority, (multiplication -
division, sddition - subtraction), the
operations ere performed from left to
right.

In addition to the six arithmetic operators, many intrinsic
mathematical and system functions are available. These
functions may be used in the place of any operand of an
expression., Some have two arguments. A1l return a numeric
value.

A number may be positive or negative Wwith up to 11 digits
of precision. A1l of the following are valid numbers:

2 -3.675 3.1415926
1234567 ~75.5432343 0.00123.

Further flexibility is gained by using the letter 'E’,
which stands for 'times ten to the power'. The following
are equivalent:

00123456789 1234567 .89E-9
.123456783E-2 1234.56789€E-6.

Ten million can be written &8s 1E7 or 1E+7?, not as E7.
Numbers are stored in either integer or floating point
format. Numbers range from approximately 1E-78 to 1E76.

A variable is a quantity whose value can be changed by
BASIC instructions. There are basically two types of
variables; simple and dimensioned. A simple variable begins
With an alpha character followed by any number of
alpha-numeric characters or underlines (_). A dimensioned
variable is a simple variable followed by parenthesized
subscripts. The RUN and CLEAR statements initialize all
variables to zero.

(1042)*5 = 60

-10+2%2+3 = 6

142-3+4*6/3 = 8

Mathematical functions:
ABS(X) ,ATN(X) ,COS(X) ,EXP(X)
FRA(X) ,INP(X),INT(X),LOG(X)
SGN(X) ,SIN(X),SQR(X), TAN(X)

System functions:

ADR(X) ,BIT(I,X),CRB(X),CRF(X)
EVF(X) ,KEY(X) ,MEM(X) ,MEMP(X)
MEMH(X) ,SYS(X),TIC(X),TSK(X)

String functions:

LEN(X) ,MCH(X,Y) ,NCH(X) ,SRH(X,Y)

APPLE=PAY_DAY
DOG[TYPE,AGE]



PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC

PAGE 9-7

9.1.3 LOOPS

Frequently it is necessary to write a program in which one
or more portions of the program are performed not just once,
but @ number of times, perhaps with slight changes each
time. In order to write the simplest program in which the
portion to be repeated is written just once, you use the
programming device knowWwn as a loop.

The loop structure is illustrated by a program which prints
the first 100 positive integers and their square roots.
Hithout a loop, the first program has 101 statements and
looks like:

10 PRINT 1,SQR(1)

20 PRINT 2,SQR(2)

30 PRINT 3,SQR(3)

980 PRINT 99,5QR(99)
1000 PRINT 100,SQR(100)
1010 STOP

Using the 'IF - GOTO' type of loop, the same program can be
shortened considerably to:

0 %=1
20 PRINT X,SQR(X)

30 X=X+1

40 IF X¢=100: GOTO 20
50 STOP

Statement 10 initializes the varisble X to 1. Line 20.

prints both X and its square root. Line 30 increments X and
Tine 40 checks to see if X is less than or equal to 100.
The program loops back to line 20 each time through, until X
is greater than 100.

A1l loops have these same characteristics: 1)
initialization (line 10, 2) body (1ine 20), 3) modification
(Tine 30), and 4) an exit test (1ine 40). Because loops are
so important and arise so often, BASIC has included in it
the FOR and NEXT statements. These statements simplify the

program to:

10 FOR X=1 TO 100
20 PRINT X,SQR(X)
30 NEXT X

40 STOP



PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC

PAGE 9-8

(9.1.3 LOOPS continued)

Line 10 initializes X to 1 and sets the limit to 100. Line
30 increments X by 1 and checks against the limit. If X is
less than or equal to the 1limit, execution returns
immediately to the next statement after the FOR statement.
. (This may be on the same line.) Khen X exceeds the 1limit,
“.execution drops through to the statement following the NEXT.

The step value defaults to one, but may be changed to any
value with the STEP parameter. The table could be printed
in reverse order by rewriting line 10 as:

10 FOR X=100 TO 1 STEP -1

For a positive step size, the loop continues as long as the
control variable is algebraically less than or equal to the
final value. For a negative step size, the loop continues
as long as the control variable is greater then or equal to
the final value.

If the initial value is greater than the final value (less
than for negative step size), then the body of the loop is
not executed at all. Execution continues with the statement
immediately following the corresponding NEXT statement.
This is call e pretest.

It is useful to have loops within loops. These are called
nested loops. They must actually be nested and cross
outside the scope of each loop.

ALLOKHED ALLOKED
FOR X FOR X
FOR Y FOR Y
NEXT Y FOR Z
NEXT X NEXT Z
FOR W
NEXT H
NOT ALLOKWED NEXT Y
FOR Z
FOR X NEXT Z
FOR Y NEXT X
NEXT X

NEXT Y



PDOS 2.4: DOCUMENTATION A CHAPTER 9 PDOS BASIC PAGE 9-9

-

9.1.4 ARRAYS

In addition to the ordinary or simple variables, there are LIST
dimensioned variables which allow you to reference many 10 DIM P[3],S[3,5]
variables with the same variable. nage. These variables use 20 FOR I=1 70 3
subscripts to reference sub-elements ‘such ~ as the 30 READ P[1]
coefficients of a polynomial [a0, a1, a2,...] or the 40 NEXT I
elements of a matrix [i,j]. 50 FOR I=1T0 3
60 FOR J=1T0 6
A dimensioned variable consists of a simple variable 70 READ S[I,J]
followed by the subscripts in brackets or parentheses. You 80  NEXT J
might use A(0), A(1), A(2), etc. for the coefficients of a 90 NEXT I
polynomial and B(1,1), B(1,2), etc. for the elements of a 100 FOR J=1T0 5
matrix. 110 S=0
120 FOR I=1T0 3
An array must be dimensioned in a program before it is 130 S=S+P[1]*S[1,J]
used, The DIM statement reserves memory for the elements of 140 NEXT 1
an array. An array cen have up to 7 dimensions. A simple 150  PRINT "TOTAL SALES FOR SALESMAN";J;" = ¢";S
snd dimensioned variable of the same name do not reference 160 NEXT J
the same element. 170 STOP
500 DATA 1.25,4.3.2.5
Array subscripts begin with zero. An array dimensioned as 510 DATA 40,20,37
("‘ DIM A[10,10] has 11 x 11 or 121 elements. (A[0,0], A[0,1], 520 DATA 29,42,10
' ., A[10,10].) 530 DATA 16,3,21
540 DATA 8,35,47
The program to the right uses both a single and a double 550 DATA 29,16,33
subscripted array. The program computes the total sales for RUN
each of five salesman, all of whom sell the same three TOTAL SALES FOR SALESMAN 1 = ¢ 180.5
products. TOTAL SALES FOR SALESMAN 2 = ¢ 211.3
TOTAL SALES FOR SALESMAN 3 = ¢ 131.65
The array P gives the price per item.of the three products TOTAL SALES FOR SALESMAN 4 = $ 166.55
and the array S tells how many items of each broduct each TOTAL SALES FOR SALESMAN 5 = ¢ 169.4
man sold. You can see from the program that product #1
sells for $1.25 per item, #2 for $4.30, and #3 for $2.50. STOP AT 170

Salesman #1 sold 40 items of the first product, 10 of the
second, 35 of the third, and so on.

The program reads in the price erray with lines 20 through
40. Lines 50 through 90 read-each man's sales. Lines 100
through 160 process and print total sales.

Array elements are stored in memory in consecutive memory
locations. The rightmost subscript changes the fastest.
Hence, the two dimensional array, A[1,2] is storgd as:

Address[A[0,0]] »> A[0,0]

A[0,1]

ﬂ A[0,2]
« A[1,0]
A[1,1]

A[1,2]



S S

PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC

PAGE 9-10

9.2 BASIC DEFINITIONS

9.2.1 BASIC COMMANDS

A BASIC command is a single instruction to the interpreter,
such as NEW. Such items cannot be entered into a program
and generally refer to the BASIC system as a whole. No more
than one command can appear on a line.

The commands LIST and LISTRP display on the console the
current program, With statement numbers in ascending order.
The NEW command clears the user wWork area, destroys the
current program, end initializes all pointers and buffers.
The RUN command begins program execution at the lowest 1line
number .

PD0OS BASIC commands include:

FILES Print disk directory

LIST List user program

LISTRP List user program in Reverse Polish
NEW Clear user Work area

SIZE Print memory usage

. STACK Print user GOSUB stack contents

9.2.2 STATEMENTS

A BASIC statement is also a single instruction to the
interpreter. Statements can begin with an signed line
nunber ranging from -32767 to 32768 (excluding 0), followed
by an instruction word, followed by any expression(s) needed
by the instruction, followed by perhaps comments, and
finally, the statement terminator (<carriage return or :).

Multiple statements can appear on one line by separating
them with a single colon (:). If no line number is given,
the statement is immediately executed. This is referred to
as keyboard mode.

BASIC statements may be entered by the programmer in any
order. They are sorted into ascending order according to
statement number. To insert a line, for example, between
the statements numbered 20 and 30, give the new statement 8
line number greater than 20 and less than 30. To replace a
line, enter the new statement with the same line number. To
delete a line, enter the statement number only.

Single non-program instructions

Program instructions

10 A=1: B=4; GOSUB 100

50 NEXT I

20 FOR I=1 70 10
30 PRINT I

LIST

20 FOR I=1 10 10
30 PRINT I

650 NEXT I



POOS 2.4 DOCUMENTATION

CHAPTER 8 .PDOS BASIC

PAGE 8-11

~
9.2.3 PDOS BASIC STATEMENT SUMMARY
Control
ELSE Execute on FALSE condition flag
ERROR Error trapping
ESCAPE Allon break character
FNPOP Pop function stack
FOR Loop header
60TO Unconditional program transfer
GOSuB Subroutine call
IF Set condition flag
NEXT Loop foot
NOESC Disable break character
ON Computed GOTO, GOSUB
POP Decrement GOSUB stack
RETURN Subroutine exit
RUN Begin execution or chain
THEN Execute on TRUE condition flag
SKIP Conditional jump
STOP Stop
SHAP Swap to next task
? Interrupts and Task communication
COM Common array
EVENT Set software event
EVF Test event flag
MAIL Global array
KWALT Suspend task pending event
Evaluation
BIT Variable bit assignment
CALL Function or assembly subroutine call
CRB CRU bit assignment
CRF CRU multiple bit assignment
LET Variable assignment
MEM Memory byte assignment
MEMHW Memory word assignment
MEMP Memory page assignment
READ Variable assignment
Interpreter
BYE Exit to PDOS
CLEAR Clear variable space
PURGE Delete program lines
A~ TRACE Monitor program execution



PDOS 2.4 DOCUMENTATION

CHAPTER 9 PDDS BASIC

PAGE 9-12

(9.2.3 PDOS BASIC STATEMENT SUMMARY continued)

Definitions

DATA
DEFN
DIM
EQUATE
EXTERNAL
FNEND
GLOBAL
LABEL
LOCAL
REM
RESTORE

INPUT/OUTPUT

BASE
BAUD
DATE
INPUT
PRINT
TIME
UNIT

DISK 1/0

String

CLOSE
DEFINE
DELETE
DISPLAY
FILE
GOPEN
LOAD
OPEN
PDOS
RENAME
RESET
ROPEN
SOPEN
SAVEB
SAVE
SPOOL

Assignment
Pick
Replace
Concatenate
Search
Match

Length

Program data storage
Function header

Array declaration
Variable associations
External command table
Function foot

Declare variable address
Define line veriable
Function local variable
Remark

Move DATA pointer

CRU base

Port initialization
Read/set system date
Read keyboard input
Data output

Read/set system time
Output selection

Close file

Define file

Delete file

Display file to console

Select, read, write, position
Open file for read only

Load program

Open file for sequential access
Read PO0S parameters

Rename file

Reset files by task/disk

Open file for random access
Open file for shared access
Save program in pseudo source tokens
Save program in ASCII format
Direct output to file

Convert binary to decimal
Convert decimal to binary
Convert decimal to hex
Convert hex to decimal
Convert hex string

Insert

Delete



POOS 2.4 DOCUMENTATION

CHAPTER 9.PDOS BASIC

PAGE 9-13

9.2.4 CONSTANTS

An arithmetic constant in BASIC represents a numeric value.
A1l BASIC numbers are stored in 48 bits (3 wWords) of
memory. This gives 11 digits of precision Wwith a range of
approximately 10 raised to the plus or minus 74th power.

The internal storage format veries and 1is transparent to
your program. Floating point numbers consist of a sign bit,
7 bits of exponent (biased by 64), and 40 bits of . fraction.
The implied binary point is immediately to the left of the
MSB of the 40-bit fraction. Integers are stored wWith the
first word equal to zero and the second word set to the 16
bit 2's complement integer. The third wWord is undefined.
When possible, BASIC stores numbers in the integer format to
improve execution speeds.

HEX constants have a decimal leading digit (0-8) followed
by the hexadecimal constant and the letter "H". Blanks are
not allowed in a hex constant.

String constants are represented by a string of cheracters

enclosed in double or single quotes. This also applies to
string constants in DATA statements.

9.2.5 VARIABLES

A variable is a quantity whose value is changed by BASIC
instructions. There are basically two types of variables:
simple and dimensioned. There are two modes in which these
veriables can be used, namely numeric and string.

A simple veriable begins with an alpha character (A-Z)
followed by any number of alpha-numeric characters or
underlines (_). Dimensioned variables are simple variables
followed by up to 7 dimensions enclosed in parentheses.
These variables are arrays which group numbers together in
the form of a matrix or list (a vector). Subscripts are
used to reference individual elements wWithin an array.
Dimensioned veriables are not the same as simple variables

With the same name. (A[0] is not that seme as the simple

variables A or AO.)

String variables require no formal declaration: but are
merely simple or subscripted variables preceded by a dollar
sign ($). String veriables are context defined, which
simply means that variables can hold any kind of data and
are typed only by the way they are used. Hence, an array
can hold character as well as numeric data. (A[0] is
identical to $A[0].)

CONSTANT RANGE = 1E-74 TO 1E74

»4110 >0000 >0000
= >0000 >0001 »0000

-
- 0
T n

1I=0FFEH
$HEX=8#-2
PRINT 1I,#-3$HEX; -2 FFFE FFFD

A=10
$A="10"
DATA 1, "ONE",'"quote"'

A
APPLE

PAY_DAY

A[10]
MULTI[1,2,3,4]

$NAME[ 10]



PDOS 2.4 DOCUMENTATION

CHAPTER 9 PDOS BASIC

PAGE 9-14

9.2.6 OPERATORS

There are four primary types of operators in PD0S BASIC:
logical, relational, algebraic, and string. Relational and
logical operators are the folloWing:

LOR Logical OR

LXOR Logical exclusive OR
LAND Logical AND

LNOT Logical NOT

NOT Relational NOT

AND Relational AND

OR - Relational OR

4

Equal
Less than
(= Less than or equal
> Greater than
’= Greater than or equal
<> Not equal

Relational operators appear in any arithmetic or string
expression and evaluate to zero for FALSE or one for TRUE.
Logical operators also appear in arithmetic expressions and
return 16-bit signed integers.

Algebraic operators are defined as follows:

+ Add

- Subtract

Multiply

Divide

Raise to the power
= Unery minus

> N ®

These operators are used in algebraic expressions and are
evaluated in the order of precedence in which they appear in
the above table. Operators with the same precedence (e.g.,
(+,-} or (*,/)) eare evaluated from left to right.
Parentheses are used to override this order of precedence.
The order of precedence with unary operators and
exponentiation depends on the form of the expression. If
the unary operator is needed to evaluate the exponent, it is
used first.

The fourth type of operator is a string operator. These
operators include:

Delete or insert
Concatenate
Convert

% Byte convert

*F RO

Logical operators

Relational operators

Algebraic operators

String operators



PDOS 2.4 DOCUMENTATION = _ CHAPTER 9 POOS BASIC

PAGE 9-15

(ﬂ'k

9.2.7 FUNCTIONS

BASIC functions are of two types, user defined and system
defined. User defined functions are added to the program
library by the DEFN statement. System functions are
predefined and alwWays resident. The system functions

include:

ABS
ADR
ATN
BIT
cos
CRB
CRF
EVF
EXP
FRA
INP
INT
KEY
LEN
LOG
(”‘ MCH
’ MEM
MEMW
MEMP

SGN
SIN
SRH
SQR
SYS
TAN
TIC
TSK

Absolute value

Memory address
Arctangent

Variable bit examine
Cosine

CRU bit examine

CRU multiple bit examine
Test event flag
Exponential

Fractional part

Integer part

Greatest integer function
Input port examine
String length

Natural logarithm

String match < °°

Memory byte examine
Memory word examine
Memory page examine
Numeric value of ASCI1 character
Sign function

Sine

String search

Square root

System parameters

Tangent

Clock tics (1/125 second)
Task status

See 10.20 DEFN and 10.34 FNEND.



Tz Szazssamiszsssssss

PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC PAGE 8-16
= =sEasTs =

9.3 LINE EDITING

Many editing features are included in the PDOS BASIC
interpreter. A line buffer is used for program entry. The
cursor is moved forward and backward without disturbing the
buffer. Facilities are provided for character insertions
and deletions as well as rubout and line cancel. A program
line is listed to the edit buffer by entering the line
number followed by a control E. The line is listed to the
screen and the cursor 1is placed at the end of the line,
ready for editing. (A '~' indicates that the control key is
held down while the following character is depressed.)

Most of the editing functions are control characters. Some
of these inciude:

~C Continue execution after escape or STOP-
statement.

~Dn Delete (n) characters beginning at the
cursor position.

n*E List into the edit buffer the program 100°E
line specified by the line number (n). 100 LGC[5]=4*ATN 1-SIN[ERT*CV]_
The cursor is positioned at the end of -
the line ready for editing.

“F Forward space 1.character.

“H Backspace 1 character.

~In Insert (n) blanks at the cursor
position.

LF Enter current line into program and
prompt With next 1ine number.

CR Enter current line into program.

escape Program break character or disregard
entered line.

rubout Delete 1 character to the left of the

cursor.

When a line is entered into the program, it is immediately 100A(10)=4*10+ (AB+0C) )

parsed for correct Reverse Polish format. If an error is *ERROR 02

detected, the error number is listed, the 1line is echoed 100 A(10)=4*10+(AB+0C))
N L)

back to the screen, and the cursor 1is placed over the
offending section.



PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC

9.4 BASIC STRINGS

PDOS BASIC strings are context oriented. How data is
interpreted depends entirely upon its context within a
program. For example, the bit pattern:

01000001 01000010 01000011 01000100 01000101 00000000

could represent the floating point number 4.1414225, the
six B-bit integers 65, 66, 67, 68, 69, and 0, or the ASCII
string 'ABCDE'. Hence, a single variable cen be assigned a
number and later, a string. An array can contain integers,
floating point numbers, and strings all at the same time.

A dollar sign '$' preceding the veriable name indicates to
the PDOS BASIC interpreter that the content of the variables
is to be treated as 8-bit ASCII characters. Strings are
stored left justified and delimited by a null character (a
zero byte).

A simple variable can hold up to 5 characters plus the null
character. Dimensioned variables can hold up to the product
of the dimensions times 6 minus 1 (a null character ends the
string). Since strings are context oriented, no checking is
done by the interpreter for variable overflows.

One additional characteristic of string array variasbles is
that individual bytes within the varieble are referenced by
following the subscripts with a semicolon and a byte index.
The first byte of a string is referenced with index 1.

Strings are stored one ASCII character per byte and are
terminated wWith a null byte. If $A is assigned "HELLO" and
A is defined at memory location >D000, then memory would
contain the following:

ADR[A] >> 4845 4CAC 4FO0

DIX A(2,17)

$A(0,0)="RHINOCEROS"
$A(1,0)="ELEPHANT"
$A(2,0)="GIRAFFE"
,$A(0,0) ; RHINOCEROS
;$A(1,0) ;ELEPHANT
;$A(2,0) ;GIRAFFE
;$A(0,1) ;EROS

S$A(1, TNT

;$A(2,1)E

$A(0,1)=$A(2,0)
;$A(0,0) ;RHINOCGIRAFFE
;$A(0,0;1)RHINOCGIRAFFE

;$A(0,0;2);

:$A(0,0;7) ;GIRAFFE

LIST

HINOCGIRAFFE

10 DIM A[2,1]

20 $A[0,0]="RHINOCEROS"
30 $A[1,0]="ELEPHANT"
40 $A[2,0]="GIRAFFE"

50 $A="HELLO"

60 B=100

70 C=3.1415926

RUN

STOP AT 70

;#ADR C;DE78
.MDUMP >DE78,>DEB?

DE78-DE7F
DEB0-DE87
DEB8-DEBF
DE90-DES?
DES8-DESF
DEAO-DEA?
DEA8-DEAF
DEBO-DEB?

4132 43F6 9A25 0000

0064 0000 4845 4C4C A2Cv.%...d..HELL

4F00 0001 0002 0002

FFFF 5248 494E 4F43 0........

4552 4F53 0000 454C

.RHINOC

4550 4841 4E54 0000 EROS..ELEPHANT..

0000 4749 5241 4646
4500 0000 0000 0000

. .GIRAFFE



PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC

PAGE 9-18

9.4.1 STRING ASSIGNMENT

The string on the right of the equal sign is stored in the
string variable on the left of the equal sign. Hex
characters in the angle brackets are not expended. The
assignment continues byte by byte, until a null character is
i encountered in the source string. If the string varisble
does not have enough storage reserved to handle the
assignment, subsequent veriasbles are overwritten. A string
holds six times the variable size minus one. Thus, & simple
veriable holds only five characters. An array of ten
elements stores 69 characters (10 x 6 - 1).

9.4.2 STRING EXTRACTION

Characters are extracted from a string by following the
string to the right of the equal sign with a comma and an
expression. The expression specifies the number of
characters to be assigned to the variable. After the
assignment is complete, an additional null character is
stored to terminate the string. This assignment, unlike

string assignment, ignores all cheracters, including any

nulls, in the source string.

9.4.3 STRING REPLACEMENT

Characters are replaced within a string by following the
string on the right of the equal sign with a semicolon and
an expression. The expression specifies how many characters
are to be moved to the string variable on the left of the
equal sign. A null cheracter is not stored when the
transfer is completed.

9.4.4 STRING CONCATENATION

Strings are concatenated together with the "&" operator.
Strings on the right of the equal sign which are joined by
the "&" operator are assigned to the string variable on the
left of the equal sign. BASIC checks that the source byte
is never equal to a previous destination byte, which would
result in a CHOO CHOO effect. Such a condition terminates
the assignment.

(string-var> = (string’
$A[0]="ABCDEFGHIJKL"

$I="YES"
;$A[0],;$1,;ABCOEFGHIJKLYES

<string-var) = (string> , <exp>

$A[0]="ABCDEFGHIJKLMNOP" ,5
;$A[0] ; ABCDE

<string-var> = <string> ; <exp>

$A[0;5]="....";4
;$A[0];ABCD. ... IJKL

(string-var)> = (string> & <(string> ....

$A[0]="ABC"§"DEF"
$A[0]=$A[0]E". .. "8 JKL"
;$A[0] ; ABCDEF . . . JKL



PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC PAGE 9-19

~

\

9.4.5 DELETE CHARACTER

Characters are deleted from a string variable by following
the equal sign With a backslash (\) and an expression. The
expression specifies hou'many characters are to be deleted
beginning at the string address to the left of the equal
sign. If the expression is zero or negative, no characters
are deleted. The delete command deletes <(exp> characters,
or until a null character is found.

9.4.6 INSERT CHARACTER

Characters are inserted into a string by following the
equal sign with a backslash (\) and a string. Characters
are inserted beginning at the string address to the left of
the equal sign. If the <string> is null, nothing is
inserted.

9.4.7 CONVERT TO ASCII

A number is converted to a string by assigning it to a
string variable. The conversion is format free and uses the
current digits size (SYS[3]) in determining the string
length and rounding digit. The string is terminated by a
null character.

9.4.8 CONVERT TO ASCII FORMATTED

A number <exp> is converted to a string <(string-var)> using
the format <string>, which follows the equal sign, pound
sign. The format string follows the same formatting rules
as used by the PRINT statement. (See 10.74 PRINT.)

9.4.9 CONVERT TO HEX

A number is converted to a four character hex ASCII string
by following the equal sign wWith a pound sign and an
expression. The expression must be in the range of -32767
to 32767. A total of five characters are stored, four hex
characters followed by a null.

<string-var> = \ <(exp’

$A[0,;5]=\4
,$A[0] ; ABCDIJKLMNOPQRSTUVHXYZ

(string-var> = \ (string>

$A[0;2]=\"...."
;$A[0];A. .. .BCDEFGHIJKLMNOPQRSTUVHXYZ

(string-var> = <exp’

$A[0]=4*ATN 1
;$A[0]; 3.14159265

(string-var) = §# (string> , <exp’

$A[0]=#"1-000-000-0000" ,8013752434
J$A[0];1-801-375-2434

(string-var> = # (exp>

$A[0]=#-2
;$A[0] ;FFFE



POOS 2.4 DOCUMENTATION

CHAPTER 9 PDOS BASIC

PAGE 9-20

9.4.10 CONVERT BYTE

Individual bytes may be inserted into a string by following
the equal sign with a percent sign and an expression. The
expression should range between 0 and 255 (8 bits). Many of
. these characters may be chained together by adding
" additional percent signs and expressions.

9.4.11 CONVERT STRING

A hexadecimal ASCII string is converted to binary by
follonwing the equal sign With a percent sign and a string.
Blanks are the only valid non-hex characters allowed and may
be used for clarity. Hexadecimal characters are defined as
0-9 and A-F.

9.4.12 CONVERT ASCII TO NUMBER

An ASCI1 string is converted to a binary number by
assigning a numeric variable to a string. Since a complete
conversion may not be possible, the string can be optionally
folloned by a comma and a variable to hold the delimiting
character. The terminating byte is stored in the first byte
of the variable. Hence, if the delimiter variable equals
the null string, the conversion was successful.

It is possible to chain many of the string assignments
together in one assignment. Those operators allowed such
chaining are %, \, #, and &.

(string-var)> = % <(exp>

$A[0;2]=465
;$AL0] ; AACDEF GHIJKLMNOPQRSTUVHXYZ
$A[0]=65%66%67%0

;$AL0] ; ABC

<string-var’ = % (string’

$A[0;2]=%"2E2E 2A2A"
;$A[0];A. . **FGHIJKLMNOPQRSTUVHXYZ
$A[0]=%"41424300"

;$A[0] ;ABC

(var)> = (string> , (var)

$A[0]=4*ATN 1
N=$A[0] ,E
:N; 3.14159265

;"‘“;sE;"’”,’“

$A[0]="~"%3EHH#-283CHE"~"
J$A[0],->FFFE<-
$A[0]=#-9473%59H%32&"DUCK"
;$A[0],;0AFFY DUCK



PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC PAGE 9-21

{!“

9.5 BASIC FILE MANAGEMENT

BASIC supports file read, write, and position. Files are LIST
opened in one of four different modes depending upon how 10 SELECT=1 !FILE SELECT
they are to be used. Shared files are locked and unlocked 20 WRITE=2 !FILE WRITE
for multi-task access. It is your responsibility to block 30 READF=3 !FILE READ
file data into records, although the position statement 40 POSITION=4 !FILE POSITION
assists you with fixed record access parameters. 100 OPEN “STEMP",F
110 FOR I=0 TO 500
A1l file access is to the last selected file. HKith 120 FILE SELECT,F;WRITE,I,I*I, I*I*I
multiple file routines, a select statement must be used to 130 NEXT I
move from one file to the next. ’ 140 CLOSE F
200 ROPEN “"TEMP" ,F
A file must be opened before it can be accessed. The open 210 I-INT[RND*500]
statement returns the file slot parameter which is used to 220 FILE SELECT,F;POSITION,18,1,0
subsequently select the file. The types of open statements 230 FILE READF,J,K,L
follon: 240 IF I<>J: PRINT “"ENTRY";I;" READ AS";J;K;L
250 PRINT I,J;K;L
OPEN Use the OPEN statement for sequential 260 GOTO 210
input or output data streams, such as RUN
Tisting to a printer or reading cards 362 362 131044 47437928
from a card reader. 5 5 25 126
- 326 326 106276 34645976
(’-k GOPEN Use the GOPEN statement for read only, 118 119 14161 1685159
random access. The file is available 182 182 33124 6028568
for access by other tasks and cannot be 11 11 121 1331
Written to. 484 484 234256 113379900
48 48 2304 110592

ROPEN Use the ROPEN statement for read/mrite
random access files. The file is not
shared and belongs exclusively to your
task until it is closed. The CLOSE
statement does not write @ new end of
file unless the file has been extended.

SOPEN Use the SOPEN statement for read/write,
shared random access files. Other tasks
may also open the file. It is your
responsibility to use the 1lock and
unlock statements to resolve task
conflicts. There is no automatic record
locking in PDOS.

Your program must close all files when done. This allows

the operating system to flush all sector buffers and update
pointers and dates in the disk directories.

-



PDOS 2.4 DOCUMENTATION

CHAPTER 8 PDOS BASIC

(9.5 BASIC FILE MANAGEMENT continued)

The FILE statement is the primary file 1/0 statement and is
used to select, read, write, and position within a file.
The commend expression immediately follows the FILE verb.
(Remember, all verbs are delimited by blanks.) Constents
may be used but it is recommended that the variables listed
to the right be defined and used instead. This makes your
program readable. The nine FILE command types are:

1. FILE 0,<fileid>{,<length>}

2. FILE 1,<fileid>{,<length>}

3. FILE 2,<data)...

4. FILE 3,<variable)...

5. FILE 4,<ength>,<record>,<index>
6. FILE 5,¢<string’...

7. FILE 6,¢string variable>...

8. FILE 7,<fileid>,<code>

9. FILE 8,<fileid>

9.5.1 SELECT AND LOCK TASK

Format: FILE 0,<fileid>,{<length?)}

Select file and lock task
Select file

Hrite to file

Read from file

Position file

Hrite line

Read 1ine

File lock

File unlock

The file selected by <fileid> is used for subsequent file

access.

Veriable data length is optionally specified by

<length). The default is 6 bytes. The task is locked while

the entire FILE statement is executed.

Before another

statement is executed, the task lock is cleared. This is
used when two users are randomly accessing the same file.

9.5.2 SELECT FILE

Format: FILE1,<fileid>{,<length>}

10 SELECT=1 !FILE SELECT

20 MWRITE=2 !FILE WRITE

30 READF=3 !FILE READ

40 POSITION=4 !FILE POSITION
50 LOCK=7 !LOCK FILE

60 UNLOCK=8 !UNLOCK FILE

SOPEN "DATA:BIN" ,FID
FILE O,FID;3,1,J,K

ROPEN “FILE",FILID
FILE 1,FILID

The file selected by <fileid> is used for subsequent file
access. Variable data length is optionally changed to
(length). The default is 6 bytes. A new length is in
effect until another BASIC verb is executed. (This includes
another FILE.)



---------------- mmmms -

PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC PAGE 9-23

~ (9.5 BASIC FILE MANAGEMENT continued)

9.5.3 WRITE TO FILE

Format: FILE 2,<data>... FILE 2,1,A,N[0],N[1]

Each expression folloning the command type is evaluated and
written to the last selected file. The data length of each
variable is 6 bytes unless changed by a select command
within the same FILE statement. The file pointer is updated
after each write.

9.5.4 READ FROM FILE

Format: FILE 3,<variable)... FILE 3,A,B,N[2]

Data is read from the last selected file into each variable

following the commend type. The data length of each

variable is 6 bytes unless changed by a select command

Wwithin the same FILE statement. The file pointer is updated
o~ after each read.

9.5.5 POSITION FILE

Format: FILE 4,(length),(record),(index) FILE 4,4*%6,1,0
FILE 4,<length x record + index>

The last selected file's pointer is positioned to a byte
index of <length> x <record> + <(index>. If the three
parameters are used, then no expression can exceed 32767,
whereas, a single expression can be any size. <(Length) is
the record length in bytes. <Record> is the record number,
and <index> is a byte displacement into the record.

9.5.6 WRITE LINE

Format: FILE 5,¢string>... FILE 5,"HELLO TURKEY"

The strings following the command type are written to the
-~ last selected file. Each string is delimited by a null
\ character. The number of bytes transferred is equal to the
length of the string. It is not affected by a FILE select
command. The write is independent of the data content. The
file pointer is updated after each write operation.



PDOS 2.4 DOCUMENTATION CHAPTER 8 PDOS BASIC PAGE 8-24

-

(9.5 BASIC FILE MANAGEMENT continued)

9.5.7 READ LINE

Format: FILE 6,<string variable)... LIST
10 DiM A[20]
String data is read from the last selected file into the 20 OPEN “LIST",F

string variables following the commend type. Each read
operation is data dependent and terminates upon encountering

30
40

FILE 1,F;6,$L[0]
PRINT $L[0]

either a <(carriage return)> or 132 characters. The <(cerriage 50 GOTO 30

return) is replaced by a null character and all <line feed>

characters are dropped.

FILE 5 is the complement of FILE 6. However, FILE 5 nrites L.IST

characters until a null character is found, while FILE 6 100 DIM A[I0)

reads until a (carriage return> is found. Hence, if a FILE 110 $AL0T="ABCDEFGHIJKLMNOPQRSTUVHXUZ"

5 1line is to be read by a FILE 6, then a <(carriage return’
must first be eppended to the line. Both FILE 5 and FILE 6
are limited to 132 characters.

120
130
40
150
160
170
180
180
200
210
220
RUN

$CR=713%0
ROPEN “TEMP" ,F
FOR I=1 70 5

FILE 1,F;5,$A[0],$CR
NEXT I
FILE 4,F:4,0
FOR 1I-1 70 5

FILE 4,F;6,8A[0]
PRINT $A[0]
NEXT I
CLOSE F

ABCOEFGHILJKLHNOPORSTUVIHXYZ
ABCDEFGHIJKLHNOPQRSTUVHXYZ
ABCDEFGHIJKLHMOPCRSTUVHKYZ
ABCDEFGHIJKLHMOPQRETUVHAYZ
ABCDEFGHIJKLMNOPQRSTUVHXYZ

STOP AT 220

9.5.8 LOCK FILE
Formet: FILE 7,<fileid>,(code> LIST

10 SOPEN "DATAF“,FILID
ihe FILE 7 statement prevents access to a shared file by 20 FILE 7,i.0CK FILID,ER: IF ER: GOTO 20
any other task. The expression <fileid> specifies the file. 30 FILE 1,FILID;4,0,3,A
The veriable <(code> is returned with a zero if the lock is 40 A=A+1
successiul, Otherwise, the error number is returned. 50 FILE 4,0;2,A"
Possible error numbers include: 60 FILE 8,FILID

52 = File not open
59 = Invalid file slot
75 = File locked

U



' PDOS 2.4 DOCUMENTATION

CHAPTER 8 PDOS BASIC

PAGE 9-25

(8.5 BASIC FILE MANAGEMENT continued)

9.5.9 FILE UNLOCK

Format: FILE 8,<fileid>

The FILE 8 statement unlocks @ locked shared file so that
other tasks can access it.

The FILE O and FILE 1 file selection remains valid for all
subsequent READs and HMWRITEs until another FILE O or 1 is
executed. However, the variable size option of FILE 0 and
FILE 1 is valid only until another BASIC commend is
executed. (This includes another FILE commend.) The verb
FILE resets the length to 6 bytes. Thus, in order to select
a different variable length, a FILE O or FILE 1 command must
be followed by a semicolon and another file command
expression.

There is no end of file test.
detect any file errors.

An ERROR trep is required to

The sample subroutine to the right illustrates how a
software record lock is implemented. Line 8010 selects the
file. Lines 8020 through 8040 wait until the file can be
locked. Once the task gains exclusive use of the file, line
8050 positions to the desired record.

Line 8060 reads the record lock parameter. If the record
is already locked, then the file is unlocked and the whole
process is repeated. If the record has been locked, then
lines 8080 end 8080 lock the record. Line 8100 reads the
record and line 8110 unlocks the file and returns.

LIST
10
20
30

90

LIST
10
20
30
40
50
100
110

8000
8010
8020
8030
8040
8050
8060
8070

8090
8100
8110
8120

SOPEN "FILEZ2" F
FILE 7,F,3 !LOCK FILE
REM PROCESS RECORD

FILE 8,F !UNLOCK FILE

ERROR 100
OPEN “"LIST",F
FILE 1,F,1,3,C
PRINT $C;
GOTO 30
POP: CLOSE F
STOP

REM READ & LOCK RECORD (FILEID)
FILE SELECT,FILEID

FILE LOCK,FILEID,ERR

IF ERR=75: GOTO 8020 !FILE LOCKED, TRY AGAIN
IF ERRO0" GOTO 8500 !'ERROR

FILE POSITION,REC_NUM,REC_LEN,0

FILE READF L

IF Lo>0: FILE UNLOCK,FILEID: GOTO 8000

FILE POSITION,REC_NUM,REC_LEN,O

FILE WRITE,-1 !LOCK RECORD

FILE SELECT,FILEID,REC_LEN-6;READF,4[0]

FILE UNLOCK,FILEID

RETURN



vt oo e

PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC

PAGE 9-26

9.6 BASIC PROGRAM EXAMPLES

9.6.1 BASIC TASK LOCK

A lock task command was not included in BASIC in order to
prevent inadvertent system lockups. However, for intertask
communications, a lock process command is sometimes
necessary. The folloWwing illustrates how to lock a task:

10 $PLOCK=%:2FC9 045B" !XLKT > RT
20 $PUNLOCK=%"2FCA 045B" !XULT > RT
30 CALL SADR PLOCK !LOCK TASK

40 FOR I-1 TO 1000: SWAP : NEXT 1

50 CALL #ADR PUNLOCK !'UNLOCK TASK
60 FOR I-1 TO 1000: SWAP : NEXT 1

70 GOTO 30

9.6.2 BASIC SETFILE ATTRIBUTES

File attributes can be chenged from BASIC using the
following routine:

1000 REM SET FILE ATTRIBUTES

1010 COM[0]=ADR N[0] !POINT TO FILE NAME

1020 COM[1]=ADR A[0] !POINT TO ATTRIBUTE STRING

1030 COM[2]=%"C0670002C0A7000804C02F8F 100004F 7C5C0045B"
1040 CALL #ADR COM[2]

1050 IF COM[0]: PRINT "PDOS ERROR";COM[0]

1060 RETURN

1 x WRITE ATTRIBUTES

2 x

3 0000: CO67 0002 XHFA MOV 32(7) ,R1 JGET FILE NAME

4 0004: COA7 0008 MOV a@8(?7),R2 JGET ATTRIBUTES

5 0008: 04CO CLR RO JCLEAR ERROR

6 OOOA: 2F8F XHFA ;HRITE ATTRIBUTES
7 000C: 1000 NOP

8 O0O00E: 04F7 CLR *R7+ ;RETURN ERROR CODE
9 0010: C6CO MOV RO,*R?

10 00012: 045B RT ;RETURN

11 0014: 0000* END XWFA



@

)

PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC

PAGE 9-27

9.6.3 BASIC CREATE TASK

A BASIC task can spawn another task using memory from its
onn address space. The FREE statement moves down the upper
BASIC data structures; namely the EXTERNAL table, FOR/NEXT
and GOSUB stacks, and variable storage. In the following
exsmple. a command line is passed to the new task in array

$L[0].

The task status is monitored by the TSK function.

When the spawned task is done, the memory 1is recovered,
again using the FREE command.

2010
2020
2030
2040
2050
2060
2070

2090
2100
2110
2120
2130

2140 FREE -1024 !RECOVER SPACE
2150 RETURN

1 x IN COM(0) = (TASK COMMAND LINE)

2 * COM(1) = LOW MEMORY ADDRESS

3 * COM(2) = HIGH MEMORY ADDRESS

4 * COM(3) = TASK TIME

5 * COM(4) = CRT PORT

6 * OUT COM(0) = ERROR

7 * COM(1) = RETURNED TASK #

8

9 0000: 05C7 BISK  INCT R? ;MOVE TO PARAMETERS

10 0002: 0700 SETO RO ;USER CURRENT PAGE W/R4,RS
11 0004: CO57 MOV *R7,R1 ;GET TASK COMMAND LINE POINTER
12 0006: COA? 0012 MOV 33*6(7),R2 ;GET TASK TIME

13 0DDA: COE? 0018 MOV @4*6(7),R3 ;GET TASK PORT

14 000E: €127 0006 MOV 31*6(7),R4 ;GET LOW MEMORY ADDRESS
15 0012: C167 000C MOV 32*6(7),R6 ;GET HIGH MEMORY ADDRESS
16 0016: 0407 CLR *R7 ;CLEAR ERROR RETURN

17 0018: 2FDD XCTB ;CREATE TASK

18 007A: C5C0 MOV RO,*R?  :RETURN ERROR

19 001C: C9CO 0006 MOV RO,31%6(7) ;RETURN TASK NUMBER

20 0020: 0458 RT

REM CREATE TASK

DIM CREATE[5],L[10]

FREE 1024 !FREE 1k

$L[0J="LT.LS 10.KT 0"

COM[0]=ADR[L[0]] !TASK COMMAND LINE
COM[1]=SYS[28] !LOW MEMORY ADDRESS
COM[2]=5YS[29] !HIGH MEMORY ADDRESS

COM[3]=1 !TASK TIME

COM[4]=SYS[10] !CRT PORT
$CREATE[0]=%"05C70700C057 COA70012COE7 0018C1270006"
$CREATE[3]=%"C167000C04D7 2FDDCSCOCICO 000B045E"
CALL #ADR CREATE[0] !CREATE TASK

IF COM[0]: PRINT "PDOS ERROR";COM[0]: GOTO 2140
IF TSK[COM[1]]°0: GOTO 2120

21 0022: 0000* END BTSK



PDOS 2.4 DOCUMENTATION CHAPTER 9 POOS BASIC » PAGE 9-28

9.6.4 BASIC ARRAY PASSING

Arrays can be passed to functions and subroutines using the
EQUATE statement. The data storage address of a dummy
variable can be assigned to any memory location. If a dummy
veriable is assigned to the information vector of an array
(array descriptor), then the dummy variable assumes the same
dimensions and limits,

Each dimension of an array allocates two words (4 bytes) in
the information vector. Thus, a two dimensional array's
information vector starts at address ADR[A[D]]-4*2.

LIST

10 DIM A[2,2],B[2,2],C[2,2] -

20 CALL FNFILL[A[0,0],10],FNFILL[B[O,0],10]

30 CALL FNMUL[A[O,0],B[0,0],C[0,0]]

40 GOSUB 500

50 STOP

500 REM PRINT ARRAYS

510 PRINT

520 FOR 1=0 TO 2

530 PRINT #* 990*;A[I,01;ACI,1]:A[1,2]; TAB 20
540 PRINT #° 990°;B[1,0];B[I,1];B[1,2]; TAB 40
550 PRINT #* 990*;C[I,0];C[I,1];C(1,2)

560 NEXT I

570 RETURN

1000 DEFN FNMUL[I,J K]

1070 EQUATE T1[0],ADR[1]-8,72[0],ADR[J]-8;T3[0],ADR(K]-8

1020 FOR 1I=0 TO 2: FOR JJ=0 TO 2

1030  T3[II,JJ)=T1[2,JJ]*T2[11,0]+T1[1,JJ]*T2[11,1]+T1[0,JJI*T2[1],2]
1040  NEXT JJ: NEXT 11

1050 FNEND

2000 DEFN FNFILL[I,J]

2010 EQUATE T1[0],ADR[1]-8

2020 FOR 1I=0 TO 2: FOR JJ=0 TO 2
2030 TA[LL,JJ]=INT[RND*J]

2040  NEXT JJ: NEXT II

2050 FNEND
RUN
3 9 2 8 9 65 43 155
1 2 7 5 7 52 23 121
0 9 7 8 1 55 19 128

STOP AT 50



f PDOS 2.4 DOCUMENTATION

CHAPTER 9 PDOS BASIC

PAGE 9-29

9.6.5 BASIC DISK BACKUP

The following routine copies the disk specified by COM[0]
to the disk specified by COM[1], sector by sector.

3000
3010
3020
3030
3040
3050

3070
3080
3090
3100

REM DISK BACKUP
BACKUP[8]
COM[0]=0 !SOURCE DISK #

COM[1]=1 !DESTINATION DISK #
COM[2]=1976 !# OF SECTORS

$BACKUP[0]=%"05C7C007C127 OOOBCOE7000C 04D704C1CSCY 0006C003CSCO™
$BACKUP[4]=%"000CCOB92FCD 1009C004C3CO DOOCZFCE1004 058181411AF0"
$BACKUP[8]=%"045BC5C00458"

CALL #ADR BACKUP[O]

IF COM[0]: PRINT "PDOS ERR*;COM[0];" AT SECTOR*;COM[1];" ON DISK";COM[2]
RETURN

1 * IN COM(0) = SOURCE DISK UNIT #
2 * COM(1) = DESTINATION DISK UNIT #
f"‘ 3 * COM(2) = # OF SECTORS
4 x OUT COM(0) = ERROR
5 * COM(1) = # OF SECTORS COPIED
6 * COM(2) = DISK WITH ERROR
7 *
8 0000: 05C7 DCPY  INCT R? ;MOVE TO PARAMETERS
9 0002: COD7 MOV *R7,R3 ;GET SOURCE DISK #
10 0004: C127 0006 MOV 31%6(7),R4 ;GET DESTINATION DISK #
11 0008: COE7 000C MOV 32%6(7),R3 GET # OF SECTORS
12 000C: 04D7 CLR *R? ;CLEAR ERROR RETURN
13 OOOE: 04CA CLR R :START HITH SECTOR O
% *
15 0010: C9C1 0006 DCPYO2 MOV R1,31%6(7) ;SET SECTOR # IN COM(1)
16 0014: €003 MOV R3,RO ;GET SOURCE DISK #
17 0016: C9CO 000C MOV RO,32*6(7) ;SET DISK # IN COM(2)
18 001A: COB9 MOV R9,R2 ;GET BUFFER POINTER
19 001C: 2FCD XRSE ;READ SECTOR
20 0D1E: 1009 JMP DCPYE ;ERROR
21 0020: CO04 MOV R4,RO ;GET DESTINATION DISK #
22 0022: C9CO 00OC MOV RO,32%6(7) ;SET DISK # IN COM(2)
23 0026: 2FCE XHSE :WRITE SECTOR
24 0028: 1004 JMP DCPYE  ERROR
25 002A: 0581 INC R sNEXT
26 002C: 8141 C R1,R5 ;DONE?
27 00ZE: 1AFO JLOcPYO2 ;N
M~ 28 0030: 0458 RT ;Y
L 29 *
30 0032: C5CO DCPYE MOV RO,*R? :RETURN ERROR
31 0034: 045B RT ;RETURN
32 0036: 0000° END DCPY



POOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC PAGE 9-30

9.6.6 FNPOP EXAMPLE

User defined functions must be gracefully exited! Variable
addresses end pointers are stored on the system heap and
oust be restored in an orderly manner. The following

" example  illustrates how the FNPOP command is used to clesr
the system heap.

LIST

10 INPUT I

20 PRINT I;" FACTORIAL="FNFACT[1]
30 GOTO 10

100 DEFN FNFACT[1]
110 ERROR FERR

120 IF I<=1: FNFACT=1: FNEND
130 FNFACT=I*FNFACT[I-1]
140 FNEND

200 LABEL FERR

210 POP : PRINT "ERROR"
220 IF SYS[32]: FNPOP : GOTO 220
230 GOTO 10
RUN
76

6 FACTORIAL= 720
710

10 FACTORIAL= 3628800
760

50 FACTORIAL= 3.0414093E64
7 100

100 FACTORIAL=ERROR

710

10 FACTORIAL= 3628800

? 100

100 FACTORIAL=ERROR

? 50

50 FACTORIAL= 3.0414093E64
?



PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC

PAGE 9-31

9.6.7 BASIC MENUS

Menu driven programs are easily implemented using DATA
statements and the MENU subroutine listed below. The menu
header also contains the current task number for a
multi-user environment. The "/" string in the DATA
statements terminates the menu list.

LIST

100
110

130
140
150
320
1000
1200

1400

1600
1610

4000
4010
4020
4030
4040

4060
4070

4100

LABEL MAIN

RESTORE 1: GOSUB MENU

DATA “** MASTER MENU"

DATA "VIEW RECORD","ENTER RECORD"

DATA "UPDATE RECORD","QUERY"

DATA "EXIT", "/*

ON I: GOSUB VIEW,ENTER,UPDATE,QUERY,QUITS
GOTO MAIN

LABEL QUITS
LABEL VIEW
LABEL UPDATE

LABEL ENTER
RETURN

LABEL QUERY

RESTORE 1: GOSUB MENU

DATA "** QUERY MENU" .

DATA "CORRESPONDENCE BY DATE","CORRESPONDENCE BY TYPE"
DATA “PRODUCTION BY OUTSTANDING BALANCES"

DATA "PRODUCTION BY OUTSTANDING ORDERS"

DATA “PRODUCTION BY QUANTITIES & TOTALS"

DATA "CUSTOMER BY OUTSTANDING LICENSES"

DATA "MASTER LIST","/"

RETURN

LABEL MENU
DIM T[10]
READ $T[0]: $I=SYS[36] !READ HEADING
$T[0]=$T[0]&" TASK "&$1&" *= IAPPEND TASK NUMBER
1=0: PRINT a3"C"," ",8[5,24];$T[0]: PRINT
READ $T[0]: I=I+1: IF $T[O]JCO>"/"

THEN PRINT 3[1+6,24];%#"0) ";I,$T[0]: SKIP -2
INPUT 9[1+7,24];"ENTER SELECTION: ";1
RETURN



PDOS 2.4 DOCUMENTATION _ CHAPTER 9 PDOS BASIC PAGE 8-32

(9.6.7 BASIC MENUS continued)

*x MASTER MENU TASK 0 **

1) VIEW RECORD

2) ENTER RECORD
3) UPDATE RECORD
4) QUERY

5) EXIT

ENTER SELECTION: 4

*x QUERY MENU TASK 0 **

1) CORRESPONDENCE BY DATE
2) CORRESPONDENCE BY TYPE

3) PRODUCTION BY OUTSTANDING BALANCES
4) PRODUCTION BY OUTSTANDING ORDERS
5) PRODUCTION BY QUANTITIES & TOTALS
6) CUSTOMER BY OUTSTANDING LICENSES
7) MASTER LIST

ENTER SELECTION:

* MASTER MENU TASK O **

1) VIEW RECORD

2) ENTER RECORD
3) UPDATE RECORD
4) QUERY

5) EXIT

ENTER SELECTION:_



-

PDOS 2.4 DOCUMENTATION

CHAPTER 9 PDOS BASIC

PAGE 9-33

9.6.8 BASIC STATUS LINE PROCESSOR

The 24th line of a terminal can be used to display status
and prompt for user inputs. Many different types of entries
can be accepted there including a command to dump the screen
to a printer. ‘

Subroutine FNSTATUS_LINE returns a 1line number to the
calling program according to a single character input. The
first parameter, a string, is printed on the 24th line. The
second and third perameters are the 1line number values
returned on a non 'Y' and 'Y' input, respectively. If a
control ‘'P' 1is entered and event 61 is 0, a copy of the
screen is output to UNIT 2 at 9600 baud.

For the screen dump to work, the terminal must be capable
of reading the display screen and sending a line at a time
under software control back to the computer. This example
uses the escape sequence of ‘<esc>4' to send the current
line. These control cheracters are the first two characters
of element PL[4].

2000 LABEL ENTER

2010 GOSUB INPUT_MASTER_RECORD

2020 GOSUB PRINT_MASTER_RECORD

2030 GOTO FNSTATUS_LINE[“ENTRY OK? N*,b2080,2070]
2040 GOSUB WRITE_MASTER_REC

2050 RETURN

7200 DEFN FNSTATUS_LINE[S,CR,Y]
7210 PRINT 3[23,0]; TAB 40;3[23,0]:$S5;"<08)>";
7220 INPUT 7INERR;#1;$1;

7230 IF $I="Y": FNSTATUS_LINE=Y: FNEND

7240 FNSTATUS_LINE=CR

7250 FNEND

7300 LABEL INERR
7310 IF SYS[0]¢>16: PRINT "<07>";: RETURN -2
7320 EVENT 61,1: IF 1=0: GOTO DUMP_SCREEN

7330 PRINT 3[23,0]; TAB 30,d3[23,0], "PRINTER BUSY. PLEASE WALT!";

7340 SHAP : IF KEY[0]=0: GOTO 7320
7350 RETURN -2



PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC

———

==

==

PAGE 9-34

(9.6.8 BASIC STATUS LINE PROCESSOR continued)

7400 LABEL DUMP_SCREEN

7410 DATE $L[0]: TIME $L[2]: BAUD -2,1: UNIT 2

7420 PRINT "<OCy***x TASK =" ;MEM[OZ2FESH];" *** DATE = “;$L[0];
7430 PRINT " »x TIME = ";$L[2];" : PRINT
7440 $PL[0]=%"C14B2EO6C2E5 0002069BC1C2 C0460202004F 2F5D2FC80200"
7450 ¢$PL[4]=%"1B342F582F56 DDC0O02B800D00 16FB2FCA0607 75D70455"
7460 FOR 1=0 TO 22

7470  UNIT 1: CALL SADR PL[0],I,L[O]

7480 UNIT 2: PRINT $L[O]

7490 NEXT 1

7500 PRINT : FOR I=1 TO 78: PRINT "*";: NEXT I: PRINT

7510 UNIT 1: EVENT -61 !RELEASE PRINTER

7520 RETURN -2

1 DUMPS: SR 05/05/82

2

3 2E00 DXOP EVFIX,8 JEVALUATE INTEGER
I *

5 * CALL #GETL,ROW,A(0)

6 *

7 0000: C14B DMPS MOV R11,R5 JSAVE RETURN

8 0002: 2E06 EVFIX R6 JGET ROH

9 0004: C2E5 0002 MOV 32(5),R11

10 0008: 069B BL *R11 JGET EVAL

11 000A: C1C2 MOV R2,R?7 ,SAVE ARRAY ADDRESS
12 *

13 000C: C046 DMPS02 MOV R6,R1 JSET ROW

14 00OE: 0202 O04F LI R2,79 ;COLUMN=79

15 0012: 2F5D XPSC ;POSITION CURSOR

16 0014: 2FC9 XLKT ;LOCK TASK

17 0016: 0200 1834 L1 RO,>1800+'4"

18 001A: 2F58 XPCC ,SEND READ LINE COMMAND
19 *

20 001C: 2F56 DMPS04 XGCR - ;GET CHARACTER

21 001E: DDCO MOVB RO,*R7+ . ;STORE

22 0020: 0280 0DOO C1 RO,>0D00 ,CR?

23 0024: 16FB JNE DMPS04 N

24 0026: 2FCA XULT Y, UNLOCK TASK

25 0028: 0607 DEC R?7 ;BACKUP

26 002A: 7507 SB *R?7,*R7 ;NULL STRING

27 002C: 0455 B *RS

28 002E: 0000° END DMPS




PDOS 2.4.DOCUMENTATION

* CHAPTER 9 PDOS BASIC

PAGE 9-35

9.6.9 BASIC INPUTS AND PROMPTS

Line prompts, cursor positions, and other control functions
can be passed as arguments to generalized input functions.
This gives flexibility to data verification and movement
through menu input sequences.

The functions FUNSTRING, FNPHONE, FNNUMBER, and FNDATE
illustrate how to use BASIC functions to easily build input

menus.

The value of each function is used as a 1ine number

for a GOTO statement. This allows the program to move back
‘to the last prompt to correct or input new data.

The first two parameters of each function are the X and Y
cursor position for the prompt string, which is the third
parameter. The fourth parameter is the array entry number
or variable where the input is stored. The fifth parameter
is either the string length or an echo mask. The last two
paremeters are the control line numbers. If a control B is
entered, the last parameter is returned. Dtherkisé, the
second to the last parameter is returned as the function

value.

The folloning example illustrates the four different types
of input functions. The IFLAG variable is set to 1 if an
input occurred.

10 DIM R[4,5],T[10]
20 GOSUB INPUT_MASTER_RECORD
30 SToP

1000
1010
1020
1030
1040
1050

LABEL INPUT_MASTER_RECORD

GOTO FNSTRING[3,10,"ENTER NAME: “,0,24,1020,1050]

GOTO FNPHONE[4,9, "ENTER PHONE: ",1,1030,1010]

GOTO FNNUMBER[5,8,"ENTER NUMBER: *,N,"<¢<¢,<<0.00>",1040,1020]
GOTO FNDATE[6,10,"ENTER DATE: ",2,1050,1030]

RETURN



== SZ2TIRIZZNE

PDOS 2.4 DOCUMENTATION CHAPTER 9 PDOS BASIC ~ PAGE 9-36

SEEE e e e S e

(9.6.9 BASIC INPUTS AND PROMPTS continued)

2000 DEFN FNSTRING[R,C,S,1,L,N,B]

2010 LOCAL I1I

2020 PRINT a[R,C];$S;

2030 FOR II=1 TO L: PRINT "_",: NEXT II: II=C+LEN S

2040 INPUT 72100;3[R,I1];8L;$T[0];: IF $T[0]="\",1: $T[0])="": SKIP 1
20650 IF $T[O]¢<>""

2060 THEN $R[1,0]=$T[0]: IFLAG=1

2070  THEN PRINT a[R,I11]; TAB C+L+1+LEN S;3a[R,11];$T[0];
2080  ELSE IF UFLAG=0: $R[I1,0]=""

2090 FNSTRING=N: FNEND

2100 POP : IF SYS[0)=2: FNSTRING=B: FNEND

2110 PRINT “<07>";: GOTO 2020

2120 FNEND

2200 DEFN FNPHONE(R,C,S,I1,N,B]

2210 PRINT 9[R,C];$S;"(__) - ext ",;3[R,C+14LEN S];

2220 INPUT ?72300;#3;11;: IF 11=0: FNPHONE=N: FNEND

2230 IFLAG=1: INPUT ?2300;3[R,C+6+LEN S];%3;12;%4;"-";13;" ext “;#4;14;
2240 $R[1,0]=#"(000) 000-0000",I11*10000000+12*10000+13

2250 $R[I,0]=$R[I1,0]&#" ext 0000",I4: PRINT @[R,C+LEN S];$R[I,0];

2260 FNPHONE=N: FNEND

2300 POP : IF SYS[0]=2: FNPHONE=B: FNEND

2310 PRINT “<07>";: GOTO 2210

2320 FNEND

2400 DEFN FNNUMBER([R,C,S1,1,52,N,B]

2410 LOCAL II,E.L

2420 PRINT 3[R,C];$51;: L=LEN S2-1

2430 FOR 1I=1 TO L: PRINT “_";: NEXT Il: LI=C+LEN S1
2440 INPUT ?2500;9[R,11],8L;$T[0)];

2450 IF $T[0J¢>"": I=$T[0],E: IF EO>"": PRINT "<07>";: GOTO 2420
2460 PRINT J[R,11]; TAB C+L+11;9[R,11],#$52;1;

2470 IFLAG=1: FNNUMBER=N: FNEND

2500 POP : IF SYS[0]=2: FNNUMBER=B: FNEND

2510 PRINT "<07>";: GOTO 2420

2520 FNEND

2600 DEFN FNDATE[R,C,S,I,N,B]

2610 LOCAL I1,12,13,11

2620 PRINT 3[R,C];$S;"mm/dd/yy";: 1I=C+LEN S

2630 INPUT 72700;3[R,11];#2;11;: IF 11=0: FNDATE=N: FNEND
2640 IFLAG=1: INPUT ?72700;3[R,11+2];"/";#2;12;

2650 INPUT ?2700;3[R,11+5];#2;"/";13;

2660 $R[I1,0]=#"00/00/00",11%10000+12*100+13: PRINT 3[R,11];$R[1,0];
2670 FNDATE=N: FNEND

2700 POP : IF SYS[0]=2: FNDATE=B: FNEND

2710 PRINT “<07>“;: GOTO 2620

2720 FNEND




PDOS 2.4 DOCUMENTATION

'CHAPTER 9 PDOS BASIC

PAGE 9-37

9.6.10 ASSIGN CONSOLE INPUTS

The SYS[12] variable specifies that all further keyboard
inputs are to come from a file specified by <exp>. The file
must be opened before the SYS[12] assignment is made. Any
error in the input file (specifically an END-OF-FILE) closes
the file and reverts back to the user keyboard for input.

If SYS[12] is equal to zero, then further character inputs
again come from the keyboard. This is wused to switch
temporarily between the keyboard and a file for inputs.

DISPLAY "INDATA"
GEORGE RICHARDS
1455 NORTHHOOD AVE
DEAN C. CAMPBELL
1004 EAST WEDGEFIELD
JOHN HEMPS
254 UNIVERSITY AVE
LIST
10 DIM NAME[10],ADDRESS[10]
20 OPEN "INDATA*,FILEID
30 SYS[12)=FILEID
100 INPUT “"NAME=";$NAME[O]
120 INPUT "ADDRESS=";$ADDRESS[0]
130 SYS[12]=0! REVERT TO KEYBOARD
140 INPUT “OK?7";$1
150 IF $I="Y",1: GOTO 30
160 STOP
RUN
NAME=GEORGE RICHARDS
ADDRESS=1455 NORTHWOOD AVE
0K?Y
NAME=DEAN C. CAMPBELL
ADDRESS=1004 EAST WEDGEFIELD
0K?Y
NAME=JOHN HEMPS
ADDRESS=254 UNIVERSITY AVE
0K?Y
NAME=_




e
PDOS 2.4 DOCUMENTATION CHAPTER 9 POOS BASIC
==z

9.7 BASIC PROGRAMMING TIPS

Generally, good, efficient code results from a good
understanding of the language. There seems to always be a
better way of implementing any algorithm and hence the
purpose of this section is to acquaint you with some subtle
but useful programming tips.

1. Integer or byte data storage for file data compaction.

MEM[ADR A]=25
MEM[ADR A+1]=100
MEMH[ADR A+2]-2048
MEMW[ADR A+4]=-30000
BINARY 1,F;2,A

/

2. Get BASIC memory limits for maximum array size.
SYS[24] and SYS]25] are the memory bounds for the free or
available memory space of PDOS BASIC. A simple program
allows dynamic array allocation for maximum array size.

1000 REM *** CALCULATE MEMORY BOUNDS ***
1010 I=24 !BYTES/ARRAY ELEMENT

1020 10=SYS[24]: IF 10¢<0: 10=2~16+I0
1030 I11=SYS[25]: IF 11¢<0: I1=2+16+11
1040 L=INP[(I11-10-200)/1] !200=0VERHEAD
1050 DIM ARRAY [L,3]

3. Set random seed from system clocks. The random seed is
a 16-bit number from which all BASIC random numbers ere
generated. There are several system clock peremeters
-available to set the seed.

LIST

10 PRINT MEMW[0ZF88H],MEMH[02FEZH] ,MEM[02F8SH]*MEM[D2FE 1H)
20 GOTO 10

RUN

9572 99 1272
9580 107 1368
9588 115 1464
9596 123 1560
9604 9 1692
9615 17 1768
9623 25 1884
9631 25 1980
9639 41 2076

ESCAPE AT 20




PDOS 2.4 DOCUMENTATION CHAPTER 9 PDDS BASIC

s=szzpase

S me e

(9.7 BASIC PROGRAMMING TIPS continued)

4. Timing routines. The delta TIC function can easily be
used to time portions of an BASIC program.

LIST

10 T=TICO

20 FOR I=1 TO 1000

30 J=SIN I

40 NEXT I

50 PRINT "ELAPSED TIME=",TIC[T]/125;"SECONDS."
RUN
ELAPSED TIME= 17.384 SECONDS

STOP AT 50

6. BASIC program protection. A BASIC program can be
protected from being listed by the following method:

1. First line is 'NOESC’.
2. RENUMB program with negative line numbers.
3. SAVEB program.

Such a program can be neither interrupted with an <esc> nor
listed with the LIST or LISTRP commands.



PDOS 2.4 DOCUMENTATION "CHAPTER 9 POOS BASIC - ... PAGeE 9-40

== :

o





