PDOS 2.4 DOCUMENTATION " CHARTER 8 DISK DEVICE SERVICE ROUTINES

PAGE 8-1

CHAPTER 8

DISK DEVICE SERVICE ROUTINES

This chapter explains the DSR format, the environment in
which it operates, and how to alter the parameters in the
standard DSRs to customize them to your system's needs. In
addition, the following discussion examines the features of
the generalized boot program, called BOOT:SR, gives a
detailed example of how to Write a completely new DSR, and
tells how to LINK and burn a new Boot EPROM.

8.1 INTRODUCTION. .o vvueereveneerreconnnsssosssacansasanss 8-3
8.2 BOOT:SR........... cerectecraonenoas ceeretesecsseanane 8-4
8.2.1 BOOT ENTRY ADDRESSES..... covesnane cesssons .8-4
8.2.2 BTFLG:SR - BOOT PARAMETERS......ccvcucesons 8-7
8.2.3 BOOT PROGRAM........... Cdeereenrnoans eee..8-10
8.2.3.1 1SYS$ LINKAGE.......cccvevnvenens 8-14

8.2.3.2 DSR LINKAGE.....ccccuvneecnansan 8-15

8.2.3.3 MEMTEST...... cerecsccescccnraras 8-21
8.2.3.4 MEMORY INSPECT/CHANGE........... 8-21
8.2.3.5 OTHER BOOT.....cvvevreenncnannas 8-22
8.2.3.6 MAKE BOOT......co00eveenee creeee 8-22
8.2.3.7 USER$ ~ AUX UTILITIES........... 8-23

B8.2.4 SYSTEM BOOT......cccvcevcencncannnncnnceacs 8-24
8.2.4.1 DEVICE SELECTION.......cccenunnn 8-24

8.2.4.2 AUTO-BOOT.....ccvvvereennnnananns 8-26
8.2.4.3 AUTO-START....covvvecereccansns .8-26

8.2.5 BOOT SUBROUTINES........cvccevencnnannsans 8-27
8.2.5.1BTT0..ccvinncnenececrenanonnnns 8-27

8.2.5.2 BBTTO....... cereesanene N - 44
8.2.56.3BTGC.....vvcvevevcesncnnnsons .0 .8-27

8.2.5.4 BTGN....... Ceseecicssoseninnas ..8-28

8.2.5.5 BOUTH. ... iivineeecrrennconanes 8-28

8.2.5.6 BTPM..civviiiineerncenecconnns 8-28

8.2.5.7 XDITB...cvieerrenocerenanancanes 8-28

8.3 DSR MODULES......ccoveneeereeraccscsnasssnnnscssnnne 8-29

=====================:==-“..“.”======s=======:====w=========
PDOS 2.4 DOCUMENTATION . CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-2

e m s e e o e e s v s e T T T T T T T T TS

(CHAPTER 8 DISK DEVICE SERVICE ROUTINES continued)

8.4 GENERATING BOOT EPROMS......cccveevvonccconacssocecs 8-31
8.5 DSR DEFINITIONS......cevvvevennes P - N1

8.5.1 BT210:5R. e e eveevereeneresansossonaconaes 837
8.5.2 BT232:SR......... PP : 2 |
B8.5.3 BT303:5R. e ceeeeeeereernsnnnnesssnaconenss 8-38
8.5.4 BT3300:5R.............. eeeeresnoneanass..8-39
8.5.5 BT3314:5R. e eeeevereeeerrerecsarconeconess8-39
8.5.6 BTG5VG:SR...eeveeeenn.. ST - =
8.5.7 BTIFDCAISR. cvuvsveeerenennnnnneecrecnnnnns .8-41
8.5.8 BTHINC:SR. ...uvueeerernnnnnns cereeennee..B-82

8.6 AN EXAMPLE....ccccvveencacccsrssoncoscsscsccnseosscB-43

-

N

)

POOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE;SERVICE ROUTINES

o e e o o e o e

PAGE 8-3

8.1 INTRODUCTION

PDOS uses read and write sector primitives to interface to
secondary storage devices. This hardware independence
allows for floppy or HWinchester disks, magnetic tapes,
bubble memories, external RAM or even enother computer as
candidates for 'disks' in PD0OS. No modification of the
operating system itself 1is required and all PDOS features
remain unchanged. This is accomplished by using EPROM
resident Device Service Routines (DSRs).

A DOSR is a software module that is external to the
operating system, and contains a specific set of entry
points, perameter tebles, and linker references. The DSR is
required to perform a defined set of functions with regard
to a particular storage device. If some functions are not
needed, the DSR must gracefully ignore the operating
system’'s calls. However all defined entries must be
incorporated into the OSR (e.g., device initialization or
motor off.)

DSRs are written in assembly language and linked to the
general boot progrem module, BOOT:SR, wusing the LINK
utility. This process might seem overwhelming at the
outset, but you should remain calm and read this chapter
carefully. It is helpful to get a listing of one of the
standard DSRs, such as BT303:SR or BT3314:SR, and look for
the various features as they are discussed. Don't despair;
someone Weaker than yourself has successfully written a DSR.
The process is a bit complicated, but the rules are well
defined and complete. w

Hardrare independent

Interfaces through R/H sector

Device Service Routines

DSRs in assembly language

PDOS 2.4 DOCUMENTATION

CHAPTER 8 DISK DEVICE SERVICE ROUTINES

PAGE 8-4

8.2 BOOT:SR

A11 PDOS systems, regardless of the hardware, use a boot
program residing in EPROM for power-up start. One assembly
language module is the basis for the EPROMs in all PDOS
systems. The source code for the program is a file called
BOOT:SR. This module contains the start-up code for each
PDOS system, the boot program itself, and all the necessary
linkage to PDOS. The following sections describe all of the
entry addresses ' in the boot program and the system
definition flags, which come from a file called BTFLG:SR. A
general discussion of the boot program's features is
followed by an explanation of the available system boot
options. Subroutines in the boot program are externally
defined for incorporation into the optional user written
EPROM routines.

The size of BOOT:SR is less than 2K bytes, depending on the
system flags. It must be included in all boot EPROMs and be
linked first. The start-up code, if any, is located at the
beginning of the ROM, and the major portion of the program
resides up from >F800.

8.2.1 BOOT ENTRY ADDRESSES

The PDOS boot EPROMs contain read and write logical sector
routines, called Device Service Routines (DSR), and a system
boot program. Entry addresses are at address »F800 and
include controller initialization and motor off routines.
Other functions of the boot EPROMs consist of a memory test,
a memory inspect/change utility, make boot facilities, and
entry into user EPROM program.

> The read and Write sector DSRs are the 1link between PDOS

and secondary storage devices. Reference to a 256 byte
sector is by disk number (RO), logical sector number (R1),
and buffer address (R2). Errors are returned in register
RO. These errors are device dependent, range from 4100 to
32768, and are defined by the individual device service
routines.

Read and write logical sector
System boot

Memory inspect and change
Memory test

RO=disk #
R1=logical sector
R2=buffer address

Ty

PDOS 2.4 DOCUMENTATION , CHAPTER 8 : DISK DEVICE SERVICE ROUTINES PAGE 8-5

(8.2.1 BOOT ENTRY ADDRESSES continued)

Memory addresses >F000 through >FFFF are reserved for EPROM
routines. The boot EPROMs for a TM990/101 system reside at
memory addresses »F800 through >FFFF. PDOS 102 and STD are
mapped at address >F000 through >FFFF. A1l use entry points
located at address >F800 through >F81F. These are defined

as follows:
»F800 READ LOGICAL SECTOR. XRSE and XRSZ AORG >F800
primitives pass RO, R1, and R2 to this BOOTV B aXRSEZ ;READ SECTOR
routine. (See 5.2.11 READ SECTOR.) B aXWSEZ JHRITE SECTOR
B 9XISEZ sINITIALIZE SECTOR
F804 WRITE LOGICAL SECTOR. XMWSE passes RO, B aXDITC ;INIT CONTROLLER
R1, and R2 to this routine. (See 5.2.23 . RT ;MOTOR OFF (IGNORED)

WRITE SECTOR.)

)F808 INITIALIZE LOGICAL SECTOR. XISE passes
RO, R1, and R2 to this routine.
Initialize sector is equivalent to write
sector except that no PDOS ID check is
made on the header sector. (See 65.2.7
INIT SECTOR.)

YF80C INITIALIZE CONTROLLER. This routine is
called once via a 'BL' instruction
before PDOS system initialization.
Device dependent initialization
procedures are handled here.

YF810 MOTOR OFF ROUTINE. This routine is
called once every second via a 'BL'
instruction and is for controller
devices, which need constant attention.
Such is the case with 5" mini-floppies,
which require the motor to be turned off
after a period of inactivity.

SEssssssssEssssassmosRs ==
PDOS. 2.4 DOCUMENTATION - . CHAPTER 8- DISK DEVICE SERVICE ROUTINES PAGE 8-6

(8.2.1 BOOT ENTRY ADDRESSES continued)

YFFFC LOAD VECTOR. This address in the
EPROMs contains the cold start-up vector
addresses used by the boot ROMs. This
address is only required by the 101
PDOS, since the 101 CPU card must map
the EPROMs at >F800.

»0000 RESET VECTOR. This address is needed
by those PDOS systems that map the EPROM
- gt address >0000 on power-up. These
. . systems subsequently map RAM at location
~ Y0000 and the EPROM is. mapped high at
3F000.. The stert-up code that does the
map flipping resides at the beginning of
the EPROM, with the RESET vector
locations >0000 and 0002 containing the

address of the boot program.

Note that the >F800 addresses above are actually at >EB00
on the 9995 SBC from Video Gemes since the I/0 devices on
that board are mapped at >F800. The start-up code for the
Video Gemes board copies the EPROM up into RAM at >E000, and
the boot program then executes from that location.

<!'\

PDOS 2.4 DOCUMENTATION

CHAPTER 8 -DISK-BEVICE SERVICE ROUTINES

SE2TIITITI==T

PAGE 8-7

8.2.2 BTFLG:SR ~ SYSTEM FLAGS

Each file, including BOOT:SR, should include the boot flags
Executing a ‘COPY BTFLG:SR' in the source
Thus, every file knows whether or
what CPU card is used, and

during assembly.
code accomplishes this.
not the system has switches,
which devices are present. File 'BIFLG:SR' is listed to the
A description of each flag follows:

right.

FLG101

FLG102

FLG95S

FLGI5V

Note that exactly one of the sbove four flags must be set
to a 1 and the other three set to zero

Setting this flag to a 1 configures the
assembly of BOOT:SR and the DSR modules
for a TM990/101MA system. A zero means
that the EPROMs are for another system.

Setting this flag to a 1 configures the
assembly of BOOT:SR and the DSR modules
for a TM990/102 system. A zero means
that the EPROMs are for another system.

Setting this flag to a 1 configures the
assembly of BOOT:SR and the DSR modules
for a G W Three 9995/STD system. A zero
means that the EPROMs are for another
system.

Setting this flag to a 1 configures the
assembly of BOOT:SR and the DSR modules
for a Video Games 9995 system. A zero
means that the EPROMs are for another
systenm.

BOOT:SR assembly to wWork.

in order for the

BTFLG:SR 09/20/82

SYSTEM CONFIGURATION FLAGS

*

FLG101
FLG102
FLG85S
FLGS5V
*
FLGROM
FLGAB
FLGSH
Lov1
Lpv2
LDv3
LDvV4

*

NOFF
x
FLGY5
DVSEL

EQU 1 ;TMSS0/101M

EQU 0 ;TM990/102

EQU 0 ;STD TMS9995

EQU 0 ;VIDEO GAMES THS9985

EQU O ;0=RAM, 1=EPROM

EQU 0 ;0=AUTO-BAUD, 1=AUTO-BOOT
EQU 1 ;0=NO SHITCHES, 1=SWITCHES
EQU 1 ,;LOGICAL DEVICE #1 (XDLTO1)
EQU 1 ;LOGICAL DEVICE #2 (XDLTO02)
EQU O ;LOGICAL DEVICE #3 (XDLTO3)
EQU O ;LOGICAL DEVICE #4 (XDLTO4)

EQU 0 ,;DISK OFF DEVICE #

EQU FLGI5S!FLGI5V
EQU LDV4*2+LDV3*2+LDV2*2+L0DV1

e e -

PAGE 8-8

PDOS 2.4 DOCUMENTATION

CHAPTER 8 DISK DEVICE SERVICE ROUTINES
SR R S T R N NN R R ES S SIS SSSEREs

(8.2.2 BTFLG:SR - SYSTEM FLAGS continued)

FLGROM

FLGAB

FLGSH

LOV1
Lbv2
Lpv3
LDv4

It is possible to burn into EPROM the
complete 101 PDOS system end have it
reside LON, at address >0000. In this
system, the DSRs are addressed at)2800
and the on-board RAM is mepped at >F000
for system variables. HWhen assembling

the R/H sector routines from BOOT:SR for

an EPROM 101 PDOS, set this flag the a
1. IN ALL OTHER CASES, this fleg must
be zero.

Setting this flag to a 1 configures the
assembly of BOOT:SR to auto-boot the
PDOS system into memory without user
intervention. A 2zero means that the
EPROMs are to auto-baud the port and
nait for your selections. ZERQ IS THE
NORMAL VALUE FOR THIS FLAG.

Setting this flag to a 1 configures the
assembly of BOOT:SR for a system that
reads sense sWitches. A zero means thet
the EPROMs are for a system that has no
switches, such as the STD PDOS system.
Hith no switches, the boot program goes
through the select device sequence
described 1later in this chepter. Only
the standard 101 PDOS EPROMS are
configured for sense switches (FLGSH=1);
ALL OTHER PDOS SYSTEMS SET FLGSH TO
ZERO.

These four flags correspond to the four
devices supported by BOOT:SR. Setting
any of these flags to a 1 configures the
assembly of BOOT:SR to assume that the
corresponding DSR is to be linked into
the EPROM and that the XDLT<#> is
defined. This means that the DSR is in
the EPROM and NOT that the device is
necessarily installed in the system.
Determining the latter is done during
the running of the program by the device
select logic (either switches or
prompts). A zero means that the
corresponding DSR is not to be linked
into the EPROMs. These flags are only
used to conditionally assemble in one of
the four device initialize calls
nothing too drastic.

FLGROM = 0 = Normal boot system
1 = PDOS in EPROM

FLGAB = 0 = Normal boot procedure
1 = Alnays auto-boot

FLGSK = 0 = No switches
1 = Snitches

LDV1 = 0 = Disks 0-3 not installed
1 = Disks 0-3 installed

LDV2 = 0 = Disks 4-7 not installed
1 = Disks 4-7 installed

LDV3 = 0 = Disks 8-11 not installed
1 = Disks 8-11 installed

LOV4 = 0 = Disks 12-99 not installed
1 = Disks 12-99 installed

j:.. -

PDOS 2.4 DOCUMENTATION

CHAPTER 8 DISK DEVICE SERVICE ROUTINES

PAGE 8-9

==sssssmessmsdsbosssrsessaes

(8.2.2 BTFLG:SR - SYSTEM FLAGS continued)

NOFF

FLGS5

DVSEL

Setting this flag to a number from 1 to
4 configures the assembly of BOOT:SR to
call the Disk Off entry of @ the
corresponding DSR module. The standerd
boot program can only call this entry
for one device, but more cen be
supported by altering BOOT:SR itself. A
zero means that none of the devices
needs to be serviced by the Disk Off
routine while PD0OS is running.

If this flag is a 1 then the EPROMs are
for a PDOS system using & TMS 9985 CPU.
A zero means that the EPROMs are for a
TMS 9900 system. This flag simply tells
BOOT:SR where to locate the workspace
for the boot program: at >7000 for 9900
systems or at >F080 for 9995 systems (in
the on-chip RAM). This flag is
automatically defined and should not be
altered.

This flag is a combination of the
logical device flags wWith the devices
bit encoded. It is currently not used
by BOOT:SR, but is made availsble for
use in other modules. '

NOFF = 0 = No disk off routine required

1 = Disks 0-3 required disk off service
2 = Disks 4-7 required disk off service
3 = Disks 8-11 required disk off service
4 = Disks 12-99 required disk off service

FLGSS = 0 = TMS 9900 system

-
"

TMS 9995 system

DVSEL = %0000

_ Disks 0-3 installed

W_ Disks 4-7 installed
___ Disks 8-11 installed
____ Disks 12-99 installed

PDOS 2.4 DOCUMENTATION

8.2.3 BOOT PROGRAM

The bootstrap prdgram begins executing on the 101MA via the
LOAD vector at memory eddress >FFFC. A1l other PDOS
systems, the 102, STD and Video Gemes versions, begin
executing the boot program via the RESET vector at memory
address >0000. There is no way to map EPROM at address
FFFC in these systems. If auto-boot has been either
selected by a switch (101MA CPU and 102 with 307 for
switches) or burned into the boot program EPROM (FLGAB = 1),
then the program proceeds to boot the system from the lowest
installed disk device. Otherwise, the program waits for a
character on the main CPU port.

The main workspace used by the boot program is at location
»7000 for the PDOS systems using the TMS 9900. The TMS 9995
based PDOS systems locate the main workspsce in the on-chip
RAM at location >F080. Various parameter locations follow
the main Workspace and a secondary wWorkspace, used for
calling the R/H sector routines while booting, is located 64
bytes ()40) above the beginning of the main workspace (at
7040 and)>FOCO, respectively). This is followed by a
buffer, whose address is externally defined for use by the
DSRs end user routines.

The first character entered is timed and used to set the
baud rate of the main console port. This is referred to as
suto-bauding a port. A carriage return auto-bauds all ports
correctly.

After the port has been bauded, the boot program tests the
Deta Set Ready (DSR) signal in the main port. If no DSR is
present the boot program prints en error message to alert
you that PDOS will not output to the terminal.

If a system initialization subroutine is present in the
EPROMs, the boot program calls it, ISYS$, using a Branch and
Link instruction. Otherwise the boot program proceeds to
sum memory from)>F800 to >FFFA. If this sum is nonzero,
then a 'CHECKSUM ERROR' message is reported, indicating that
something has happened to the EPROMs and could be a source
of problems. The checksum is set by the LOGO utility before
the EPROMs are burned. The location that is altered for the
checksum is >F812.

CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-10

TEz===IszsIzssTRsss

THS90/101MA = >FFFC
TM880/102, STD = >0000

Main workspace = »7000 (or >F080 for 9995)

Secondary Workspace = »7080 (or >FOCO for 9995)

Auto-baud main port

9802 initialized for 11 bits:
1 start bit
7 bit character
1 even parity
2 stop bits

Test OSR high
DSR LOW

Call ISYS$, if present

Checksum EPROM
CHECKSUM ERROR

PDOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES

m— =sERs

PAGE 8-11

(8.2.3 BOOT PROGRAM continued)

Next, you may be queried as to which storage devices are
installed. This occurs only when there are no configuration
sWitches available, such as with a TM390/102 or SBC95/1
system, A single 'Y' chaeracter selects the device.
Anything else ignores the device, even though the DSR is
linked into the EPROM.

Finally, the PDOS boot menu 1is displayed. You may noW
select from various functions including:

<CR>,0-99 System boot from disk numbers 0 through
99. Boot sector constants within the
EPROMs select the correct default sector
of the boot. Auto-boot or a carriage
return selects the lowest numbered
storage device installed. See DEVICE
SELECTION. '

100 System memory test (100). A pass is
made through memory writing random data
and then a second pass verifies memory
content.

101 Memory inspect and change (101).
System memory is examined, altered, or
copied. Both a hexadecimal and an ASCII
dump is provided.

102,103 OTHER BOOT (102). and MAKE BOOT. (103)
routines. A system boot from any
logical sector is done by the OTHER BOOT
routine. The MAKE BOOT routine writes
memory from >0000 to >6000 to any disk #
beginning at any logical sector number.

104 AUX programs (104). Other routines are
placed in the 1lower half of the EPROM
space ()F000 through >F7FF) and called
via an entry from the externally defined
label USER$.

105 Go to PDOS (105). Although not in the
menu message, entering a 105 executes a
BLWP @>0000. This is provided so that a
boot that is aborted may be continued
Without rebooting.

<LOAD vector>
<carriage return>
SELECT TM990/303? Y
SELECT ER33147?
*PD0S BOOT R2.4
0-99=B00T
100=MEMORY TEST
101=1AC

102=B00T

103=MAKE BOOT
104=AUX

?

System boot

Memory test

{Optional)
{Optional}

Memory inspect and change

Boot and make boot

Auxiliary program

G000

== ST ERESSTRasENEERRTEnes

PDOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES

(8.2.3 BOOT PROGRAM continued)

The following flow diagram indicates the main
the boot program.

101MA 102
1. Initiate boot program LOAD RESET
with EPROM at address: ’F800 »>0000
Set map information in: -~ ‘812

Copy EPROM high - -
Swap EPROM high with: -- CKON
EPROM at address: - SF0O00

2. Go to BAUD routine
Auto booting?
Yes, go to system boot routine
No, reset main 9902 and baud the port
3. Test for DSR high on main port

Not high, print error message

PAGE 8-12

features of

STD

RESET
»0000

g1

4. Branch to system initialization routine ISYS$

(optional, user supplied)
5. Checksum EPROMs from >F800 to >FFFA
1f nonzero sum, print error message
6. 1f no switches assembled in then

Ask to select each device present and
set bits in DRSEL

»0000

LOCR

YEQOD

BAUD - Auto-baud main port

CKSM - Checksum EPROM and
ask for devices

PDOS 2.4 DOCUMENTATION 7 CHAPTER B DISK DEVICE SERVICE ROUTINES

e —————————

PAGE 8-13

(8.2.3 BOOT PROGRAM continued)

7. Output boot menu and get reply
If # < 100 then go boot system
If # > 100 then go to BOOT utility or user routine

8. Auto select disk from disk 0, 4, 8 or 12
based on the sWwitch settings

9. Save disk # and boot sector # in PARMS
10. Print 'BOOT.."’

11. Initialize all devices present by
calling all INIT DSR entries

12. Clear sides and density flags and boot the system
13. Set auto-start and disk # for PDOS
14. Check auto-boot
If auto-booting, just GOOO
If not, test for a character
15. Check for interim character
If character, return to MAIN
1f not, print 'HIT RETURN'

16. Go to PDOS With a BLWP 3>0000
and exit BOOT program

MAIN - Output menu and get reply

MAINO4 - Select a boot disk
from the switches (get lowest)

MAINO6 - Boot PDOS system

G000 - Go to PDOS

- - ; S ‘7---==-=

=I====

POOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES -

-------- 2 SESSEETESSIESISRSEISS

PAGE 8-14

e s e ds

8.2.3.1 ISYS$ LINKAGE

Sometimes it is desirable to call a routine from the boot
program only once. This 1is done with the System

Initialization routine. This routine, if present, is called DEF ISYS$
once via a Branch and Link instruction after the port is : RORG 0
bauded snd immediately before the EPROM is checksummed. A1l 15YS$

registers may be used without affecting BOOT operation.
Possible uses for the 1SYS$ routine include prompting the
user for a disk step rate constant, printing a long page of
instructions, or performing some other one-time procedure.

The standard 101, 102 end Video Games PDOS EPROMs do not
use an JISYS$ routine. The standard STD PDOS EPROM uses
15YS$ to set the stepping rate constant for the FD1793
Floppy controller chip. (See 'ISSTD:SR' for an example of
ISYS$.)

To write a routine, simply set the origin at relocatable
»0000 and externally define the label ISYS$ equal to the
subroutine entry point. Since the address to return to the
boot program is passed in R11, the ISYS$ routine is exited
With a B *R11, or its equivalent. Any of the BOOT:SR
subroutines may be used in the ISYS$ module.

see

- ———

;ENTER ROUTINE

PDOS 2.4 DOCUMENTATION

CHAPTER 8 DISK.DEVICE SERVICE ROUTINES

PAGE 8-15

<

8.2.3.2 DSR MODULE LINKAGE

System constants, locations, and subroutine addresses
defined by the B00T:SR program are externally defined for
use in the DSRs and the user programs. The 1list to the
is extracted directly from BOOT:SR.

right

entries are defined as follows:

TICS2

TIME

TPS

D303C

This label is the address of the PDOS
system 16-bit time counter, It is
incremented every time the system clock
interrupts (each TIC). Possible DSR
uses include waiting for a certain
number of seconds (use TPS to calculate
one second) and checking elapsed time.

This label is the address of the PDOS
system Jlocation of the current task
timer. HWhen e task is scheduled, it is
loaded wWith the number of TICs the task
is alloned. Each subsequent clock
interrupt decrements TIME. MWhen it goes
to zero or negative, PDOS swaps to the
next task. This counter cen be cleared
at any time by a DSR to avoid wasting
CPU time while waiting for an elapsed
time or for a completion signal.

This label is a system constant equal
to the number of TICs, TIME increments,
that constitute one second in real time.
One possible DSR use is to wait one
second, by sampling TICS2 at the
beginning, calculating the delta TICs in
a loop and comparing the difference to
the constant TPS.

This label is the address of the PDOS
system Jlocation of a ten word memory
block used by the BT303:S5R DSR to pass
to the 303A the R/HW sector command list.
These locations are only used in BT303
on the TM990/101MA system so that the
paging ER3232 RAM cards can be used wWith
the 303A controller.

The DEF'ed

DEF TICS2,TIME,TPS

DEF D303C,L3LOCK, SHLOCK

DEF DSFLG,DDFLG,MOFLG

DEF BAUD,BHS , IBHS
DEF MAIN,PARMS ,BUFF

DEF BTTO,BBTTO,BTGC
DEF BTGN,BOUTH,BTPM
DEF XDITB

%

* USER ROUTINES

*

REF USER$ USER UTILITIES

REF ISYS$;SPECIAL INITIALIZATION
*
* REQUIRED LINK PARAMETER LIST
;UNIT TM990 STDS5 VG
REF XDLTO1 ,0-3 303A FDC/1 9908
REF XDLT02 ;4-7 ER3314 SASI RS232
REF XDLTO3 ;8-11 210 RS232 --
REF XDLTO4 ;12-99 ER3300 -- -

POOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES , PAGE 8-16

- T e e

(8.2.3.2 DSR MODULE LINKAGE continued)

L3LOCK This label is the address of the PDOS
system location of the level 3 lock.
This location locks out all other task's
from éxecuting level 3 disk routines.
PDOS sets L3LOCK to -1 before it
branches to the R/W sector routines.
Every DSR MUST clear this lock before
exiting back to PDOS, so that others
(including himself) can enter again.
Non-DMA DSRs should 'ABS aL3LOCK' at the
beginning of the routine to allow page

sWapping.

SKLOCK This label is the address of the PDOS
task lock flag. HWhen non-zero, PDOS
does not sWep, regardless of hoWw many
TICs go by. This is the lock flag that
is set end reset by with the XLKT and
XULT primitives. One possible DSR use
is to lock out the execution of other
tasks during time critical device
servicing, to avoid data overruns. Note -
that this lock only inhibits all other

_tasks from executing, NOT all other
code. The clock interrupt routine

- continues to execute as well as other
“interrupt processors, such as characters
or hardware events, even though SHLOCK
is set. For more time critical parts of
DRS code, a LIMI O must be executed to
inhibit even the clock from
interrupting. But beware, or the system
real time clock can lose TICs.

DSFLG This label is the address of a four
byte disk sides table. Each byte
corresponds to one disk: a zero
indicates that the disk is single sided
and a >FF indicates double sided. The
floppy disk DSRs normally set these
flags from byte 30 of the header sector,
after any successful reading of sector
0. This allows the DSRs to
automatically handle both single and
double sided media, transparent to the
user.

-

S

POOS 2.4 DOCUMENTATION CT TS CHAPTER 8 CDISK DEviCE SERVICE ROUTINES

PAGE 8-17

(8.2.3.2 DSR MODULE LINKAGE continued)

DOFLG

MOFLG

This label is the address of a four
byte disk density table. Each byte
corresponds to one disk: a zero
indicetes that the disk is single
density and a)FF indicates double
density. The floppy disk DSRs normally
set these flags from byte 31 of the
header sector, after any successful
reading of sector 0. This allows the
DSRs to automatically handle both single
and double density formatted media,
transparent to the user.

This label is the address of a four
byte motor on table. The use of these
locations varies wWith different DSRs.
For BT3300, each byte corresponds to one
disk. HWhenever a disk 1is accessed, a
byte constant of 10 is 1loaded,
indicating a ten second timeout. hkhen
PDOS calls the DOFF entry of the DSR,
the logic decrements each positive byte
and turns off the corresponding drive
motor if it equals zero.

The 12 byte flags described above can be redefined for any
purpose by the user, if the devices that use them are not to
be linked. See the DSR definition section for a 1list of
where they are used.

BAUD

BHS

IBHWS

This label is the address of the BOOT
routine that auto-bauds the main port
and continues on the start the boot
program.

This label is the address of the BOOT
program’'s main Workspace.

This label is the address of the BOOT
programs's secondary Workspace. This is
used by BOOT for R/W sector calls, but
you can use it for other BLWPs in your
auxiliary routines.

PDOS 2.4 DOCUMENTATION- ..~ - CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-18

(8.2.3.2 DSR MODULE LINKAGE continued)

MAIN This label is the address of the BOOT
program routine that prints the main
menu and prompts for user selection.
This is the address that a USER$ routine
branches to when returning the the boot
program.

PARMS This label is the address of the BOOT
program's parameter 1ist. This and the
subsequent locations store the
paremeters entered when the boot program
subroutine BTGN is called. See the
subroutine definition section for
details.

BUFF This label is the address of the BOOT
program's buffer area and points just
beyond the secondary workspace.

BTTO This label is the address of the BOOT
program subroutine which outputs the one
or two characters in RO. See the
subroutine definition section for
details.

BBTTO This label is the address of the BOOT
' program subroutine which outputs the one
or two characters following the call, in
*R11. See the subroutine definition
section for details.

BTGC This label is the address of the BOOT
program subroutine which gets a
character from the main port into the
MSB of RO. See the subroutine
definition section for details.

BTGN This label is the address of the B00T
program subroutine which outputs a
prompt messege and gets either a
carriage return or a 1list of decimal
numbers. The numbers sre converted to
binary, stored in order beginning at
location PARMS, and the last one entered
is passed back in R1. See the
subroutine definition section for
details.

)

“;" : v' ‘ ',vl - {; Tasuineauespleserazsssssessszs srmcsszzs
PDOS 2.4 DOCUMENTATION .. CHAPTER.8 -DISK-DEVICE SERVICE ROUTINES PAGE 8-19
soskessis : R T R N N R R S S R S RS R RS I TS IS SIS S=EIS

(8.2.3.2 DSR MODULE LINKAGE continued)

BOUTH This label is the address of the BOOT.
program subroutine which outputs the
hexadecimal value of R3 to the main
port. See the subroutine definition
section for details.

BTPM This label is the address of the BOOT
program subroutine which outputs the
message whose address .. immediately
follows the call, in *R11. See the
subroutine definition section for
details.

XDITB This label is the address of the BOOT
program subroutine which calls the
initialize routine of all the .installed
OSRs. This can be used in format
routines and the USER$ program. See the
subroutine definition section for
details.

The following label are externally referenced by BOOT:SR, Labels defined in BOOT:SR
or REF'd in, and must be externally defined, or DEF'd out,

by DSRs and USER$ routines. BOOT:SR assembles default

routine and table addresses so that if no subsequent module,

either DSR or user routine, externally defines the following

labels, then the boot progrem ignores the call altogether.

USER¢$ This label is the entry address of the
auxiliary routine that you link into the
boot EPROMs. See the USER$ linkage
section for more details.

I1SYS$ This label is the entry address of the
system initialization routine that you
link into the boot EPROMs. See the
ISYS$ linkage section for more details.

XDLT01 This label is the address of the DSR Oisks 0-3
link table for device #1. When this
device is installed and selected, any
PDOS calls for disk numbers 0-3
reference this table. This label must
be externally defined, or DEF'd out, by
the DSR module for device #1.

T

PDOS 2.4 DOCUMENTATION " 'CHAPTER 8 'DISK DEVICE WICE ROUTINES

emm

XDLT02

XDLT03

XDLTO4

ol .

(8.2.3.2 DSR MODULE LINKAGE continued)

-t

&

This label is the address of the DSR
link table for device #2. When this
device is installed and selected, any
PDOS calls for disk numbers 4-7
reference this table. This label must
be externally defined, or DEF'd out, by
the DSR module for device #2.

This label is the address of the DSR
link table for device #3. When this
device is installed and selected, any
PDOS calls for disk numbers 8-12
reference this table. This label must
be externally defined, or DEF'd out, by
the DSR module for device #3.

This label is the address of the DSR
link table for device #4. Hhen this
deévice is installed and selected, any
PDOS calls for disk numbers 12-99
reference this table. This 1label must
be externally defined, or DEF'd out, by
the DSR module for device #4. The
default boot sector index into the DSR
link table for these devices is equal to

the disk number modulo 4. For example,
booting from disk 52 begins at the .

sector indicated by the first, or disk
0, boot sector entry since 62 is
congruent to zero, modulo 4.

Aedmp et et

sssrssssIzzIzasossnE

PAGE 8-20

Disks 4-7

Disks 8-11

Disks 12-89

szzzis : EzspésyzoosmdesseEsENe eSS RnEz s TeETETTS ==
PDOS 2.4 DOCUMENTATION L CHAPTER 8 -DISK DEVICE SERVICE ROUTINES PAGE 8-21
SZzmsm=zzoozs Szzmazssssszas szzssoospEdsSssetesssoososssszeresssesssTsnesssans

5;»; : :

8.2.3.3 MEMTEST

Option 100 of the boot EPROMs selects a memory test 7100,57312 Tests >0000-)>EQ00
routine. An optional second decimal parameter is used to 7100,53216 Tests >0000~>0000
select a memory test range other than from »0000 to »7000. 7100,49120 Tests >0000->C000
The routine first passes through memory, writing random 7100, 45024 _ Tests »0000-»B000
data. A second pass is then made to verify the data. For 7100,40928 Tests >0000->A000
each successful memory pass, a period and bell are output to 2100, 36832 Tests >0000->9000
the console. If an error occurs, the address is printed 7100,32736 Tests >0000->8000

along With the exclusive OR of the data read and the correct
data. To exit the memory test, you must restert the boot
program with either the RESET or LOAD vector.

8.2,3.4 MEMORY INSPECT/CHANGE

Using the memory inspect and change, system memory is
examined, altered, or copied. Both a hexadecimal and an
ASC1I dump is output. There is no prompt. HWhen the cursor
is the extreme left, any one of the following three modes is

P invoked.

Inggect and Change

bt

To examine and alter a memory location, input one hex
number followed by a carriage return. The location address
is output, followed by a colon and the contents of the
location. Entering a hex number alters that location. A
space bar increments the location by 2 and the next
location's contents eare displayed for alteration. A minus
(-) decrements the location and a control C cancels any
input. An escaepe exits to the boot progrem menu. Entire
Words are altered, so single byte changes are not possible.

Memory Dump

To examine a block of memory, input two hex numbers,
separated by @ space or comma. The memory contents from the
first address through the second address displays to the
terminal in both a hexadecimal format, and in an ASCIIL
format (ignoring the uppermost bit). If the character
represented by a byte is not printable (i.e. less that >20),
then a period is printed in its place. A space bar
momentarily halts the output and then restarts the display.
An escape returns to the boot program menu.

--------------------- Sh et L e e e e

PDOS 2.4 DOCUMENTATION ~~ CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-22

----- Srzooismsppntessssszssonannotsnzaganne T==x

(8.2.3.4 MEMORY INSPECT/CHANGE continued)

Memory Copy

To copy one block of memory into another, input three hex
numbers, seperated by single spaces or commas. The memory
contents from the first eddress through the second address
copies into a block sterting at the third address. The copy
mode uses a move byte (MOVB) instruction so that odd address
boundaries are possible. This can be used as a memory test.
Remember that the 102 mep registers at >0080 and the boot
rorkspace at either >7000 or >FO00 must not be disturbed.

8.2.3.5 OTHER BOOT

A system boot is read into memory from any desired disk

number beginning at any logical sector number by using the

OTHER BOOT option. Since the default boot sector number is

in EPROM, OTHER BOOT is useful when booting from a

non-standard disk, or for checking the ability to write data

to and read it back from a device. The OTHER BOOT routine

reads data from any disk # beginning at any logical sector UNT,SCT=
number into memory from >0000 to >6000. The reply to the UNT,SCT=1, 10088<CR>
prompt is disk #, comma and sector #. As wWith SYSTEM BOOT,

if you hit a character from the console during the boot

process, the program booted is not entered. Instead,

control returns to the boot program menu and prompt.

8.2.3.6 MAKE BOOT

A system boot is written to any desired disk number

beginning at any logical sector number by the MAKE BOOT

option. This is useful in backing up the PDOS boot to

another disk, or for checking the ability to write data to

and read it back from a device. The MAKE BOOT routine

writes memory from >0000 to >6000 to any disk # beginning at UNT,SCT=

any logical sector number. The reply to the prompt is disk UNT,5CT=3, 1846¢CR»
#, comma and sector #. Any errors are reported and control

returns the the boot program menu and prompt.

=========m ==

POOS “2.4 DOCUMENTATION _ : . CHAPTER 8 JDISK DEVICE SERVICE ROUTINES PAGE 8-23

-

8.2.3.7 USER$ — AUX UTILITIES

1f there is room left in the boot EPROMs, you cen add DEF USER$

auxiliary routines. These modules are l1inked with BOOT:SR RORG O

and the other DSR modules. Care must be taken that there is USER$... JENTER ROUTINE
enough room for all the routines. Simply set the origin at ves

relocatable »0000 eand externally define the 1label USER$
equal to the routine entry point. Then the boot menu
selection 104 branches to your routine. Upon transfer to
the USER$ routine:

R13 points to the character output routine ,BBTTO
R14 points to the get hex routine, BTGH
R16 points to the output hex routine, BOUTH

A1l boot subroutines may be used. Multiple auxiliary
routines are added by making aenother menu as the main
routine. To exit from the routine and return to the main REF MAIN

boot menu, you must branch to the external reference MAIN. .
B OMAIN JEXIT

E e e e P e e Y S Ty L Y ===

PDOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-24

S L P EL S et R

8.2.4 SYSTEM BOOT

The boot program needs to two which devices are installed
in the system and whether or not to auto-boot. The first is
obtained from either the sense switches or from responses
from the operator. The second comes from either the sense
switch or the BTFLG:SR flag, FLGAB. If the auto-boot
feature is taken, then PDOS performs an auto-start, too.

BOOT:SR uses system memory locations in PDOS to pass this
information to PDOS initialization. First, the memory byte
at location »0070 (which is in the XOP 12 vector location),
is the auto-start flag for PDOS. If it is zero, PDOS
suto-bsuds the port and prompts for the date and time as
usual. If it is non-zero, PDOS does not auto baud, but
executes the file SY$STRT instead. 1f either the auto-boot
feature 1is selected or byte >0070 is non-zero on the boot
disk, then the auto-stert is initiated.

Second, the memory byte at location 0071 (also in the XOP
12 vector), is loaded byte the boot program with the disk
number from which the system was booted. PD0OS 1loads this
value into the default system disk number for task 0 at
system initialization.

1f no sense switches are used, the boot program loads the
memory Word at location »2FFE with a bit encoded value which
tells the R/W sector handler in BOOT:SR which devices are
installed. The 1least significant bit of the memory word
corresponds to device #1 and the bit is set if the device is
installed.

When booting the system, the boot program calls the
appropriate DSR read sector routine with BLWP instruction,
just like PDOS does. However, the secondary boot workspace
is used.

8.2.4.1 DEVICE SELECTION

Device selection information is given to the boot program
by either sense switches or through an operator prompt
sequence. Only the 101 and 102 PDOS systems may have sense
sWitches, but all PDOS systems may be configured to use the
operator prompts.

——

PDOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES

PAGE 8-25

(8.2.4.1 DEVICE SELECTION continued)

SENSE SWITCHES

Some PDOS systems have sense sWitches available to read
under program control. These are the TM990/101MA CPU and
the TM990/102 CPU used in conjunction with a TM990/307 1/0
card. The standard 101 PDOS EPROMs use sWitches to select
devices and auto-booting. The standard 102 EPROMs and all
other PDOS systems do not assume that sWwitches are present,
but rather they use the operator prompt sequence for
determining devices present.

The BOOT:SR program defines the function of the TM3990/101MA FLG101 EQU 1
sHitches as follows: FLGSW EQU 1
S1 = ON = Auto-boot & execute ‘'SY$STRT'
S2 = ON = 303A controller (UNITS 0-3)
S3 = ON = 3314 Hinchester controller (UNITS 4-7)
S4 = ON = 210-3 bubble cerd (UNITS 8-11)
S5 = ON = 3300 floppy controller (UNITS 12-99)

These switch definitions are included in BOOT only if
FLG101 equals 1 and FLGSH equals 1.

To assemble a 102 EPROM with 307 switches, set FLG102 equal FLG102 EQU 1
to 1 and FLGSH equal to 1. The BOOT:SR program then defines FLGSW EQU 1
the function of the TM390/307 switch pack S8 as follows:

S8 = OFF = Auto-boot & execute 'SY$STRT'

S§7 = OFF = 303A controller (UNITS 0-3)

S6 = OFF = 3314 Hinchester controller (UNITS 4-7)
S5 = OFF = 210 bubble card (UNLTS 8-11)

S4 = OFF = controller #4 (UNITS 12-99)

The special assembler option, #, is used to either assemble
the switch logic (#=1) or the select logic (#=0).

OPERATOR PROMPTS

Hhen no switches are available, the BOOT program prompts to

select those devices whose DSR's Were assembled into the SELECT 303A ?
EPROM ere currently present in the system. The message from

each DSR is output, preceded by the word 'SELECT' and

follonwed With a question mark. You simply enter a 'Y', if

the device is in the system, or a carriage return, if not.

This sets bits in the location DRSEL. DRSEL is used by the

boot to determine legal disk numbers.

;SELECT 101
;USE SWITCHES

;SELECT 102 CPU
;ASSUME 307 IN

PDOS 2.4 DOCUMENTATION - - - I CHAPTEB 8 DISK- DEVICE SERVICE ROUTINES ‘ PAGE 8-26

(8.2.4.1 DEVICE SELECTION continued)

Only one device DSR is called for Disk Off service. This
device 1is indicated to BOOT:SR by the flag NOFF. If set to
zero, no motor off DSR entries are called by the EPROM. If
NOFF is set equal to 1, then the XDLT01 device motor off
entry is called once a second (if it is present).

8.2.4.2 AUTO-BOOT

The PDOS boot EPROMs heve the facility to, automaticany
boot PDOS into RAM and set the auto-start flag at memory
byte address »0070. On a TM980/101MA systen; this option is
selected by switch #1 on the CPU card. Other systems
require external switches or hard coded auto-boot. If the
flag FLGAB in the BTFLG:SR file is set to a 1, then the
resulting boot EPROMs auto boot even without switches.

8.2.4.3 AUTO-START

3

If the suto-start flag (byte 50070) is non-zero, thefi POOS

sutomatically executes the file named -'SY$STRT' on the
system disk. Care must be taken that a baud port command
(BP) is executed under control of the 'SY$STRT' file, since
the system console port is not auto-bauded.

The file type of 'SY$STRT' indicetes how the file is to be
executed. Normally, it is a procedure file (typed AC) with
the first command being a BAUD PORT (BP) for the console
port. Other commands might include configuring other user
tasks and the sterting of a turn-key application program.
The name of the suto-start file is changed using the BFIX
utility. If byte)70 on the boot disk is non-zero,
suto-start is entered regardless of the switch setting of
the value of FLGAB in the ROMs.

Byte location 0071 is loaded wWith the boot disk number
after the system is booted and just before a ‘BLWP 3>0000'
is executed. PDOS loads the default:system: disk:number from
this 1location. Thus, the system comes up using the seme
disk from which it wes booted.

-&.‘::::..-:—-....—-.m:::::::: === et

NOFF EQU O ;NO MOTOR OFF DEVICE

NOFF EQU 4 JUNITS 12-98 REQUIRE SERVICE

" Switch 1 ON = Auto boot

FLGAB EQU 1 ;AUTO-BOOT H/0 SHITCHES

.SA SY$STRT,AC
.SF SYS$STRT
BP 1,19200

BP 2,9600

sY 1

LV 10

MENU

RC

»0070 = Auto-start flag
»0071 = Initial default disk #

)

PDOS 2.4 DOCUMENTATION

CHAPTER 8 DISK DEVICE SERVICE ROUTINES

PAGE 8-27

8.2.5 BOOT SUBROUTINES

BOOT:SR externally defines some of its utility subroutine
addresses so that they are available for user routines. The
following summary defines the function and register usage of
each. These subroutines msy be used in USER$ and ISYS$
modules, but usually not by ODSRs. However, for debug
purposes they might even come in handy for outputting
characters on retries or intermediate error numbers.

8.2.5.1 BTTO - OUT RO

Function: This routine outputs to the main port, the
character(s) in RO.

Call sequence: LI RO, 'OK’
BL @BTTO

Registers: Destroys R9 & R12.

8.2.5.2 BBTTO — OUT *R1l

Function: This routine outputs to the main port, the
character(s) following the call.

Call sequence: BL aBBTTO
DATA 'OK*

Registers: Destroys R9 & R12.

8.2.5.3 BTGC - GET CHARACTER AND ECHO

Function: This routine gets a character from the main port,

stores it in the left byte of RO, and echoes it
if it is printable.

Call sequence: BL @BTGC

Registers: Destroys RS & R12.

PDOS 2.4 DOCUMENTATION CHAPTER 8 . DISK DEVICE‘SERVICE ROUTINES

PAGE 8-28

(8.2.5 BOOT SUBROUTINES continued)

8.2.5.4 BTGN - GET NUMBER

Function:

Call sequence:

Registers:

This routine outputs a prompt message, gets a series
of decimal numbers separated by commas, and returns
the last number entered in R1. A1l the numbers are
stored in order beginning at location @PARMS, with
the next un-entered parameter zeroed.

BL @BTGN
DATA PROMPT ;MESSAGE TERMINATED WITH BYTE 0
DATA PROBLEM ADDRESS ;ROUTINE TO HANDLE ILLEGAL CHAR
<CR> RETURN ,CR ONLY

NORMAL RETURN

Destroys RO-R3 & R9-R12.

8.2.5.5 BOUTH - OUT HEX R3

Function:

Call sequence:

Registers:

Outputs to the main port the hexadecimal value
of R3. Only 4 characters are output.

BL @BOUTH

Destroys RO, R2-R5, RS & R12.

8.2.5.6 BTPM — PRINT MESSAGE

Function:

Call seguence:

Registers:

Output to the mein port the message whose
address immediately follows the call.

BL IBTPM
DATA MESO1

Destroys RO, R1, R5, RS & R12.

8.2.5.7 XDITB - INIT DEVICES

Function:

Call sequence:

Registers:

Initialize all devices present for format
or INIT utilities.

BL aIXDITB

Depends on the DSR's called.

-

o o e o e e o

PDOS 2.4 DOCUMENTATION

CHAPTER 8 DISK DEVICE SERVICE ROUTINES

PAGE 8-29

8.3 DSR MODULES

A1) PDOS Device Service Routines come from source files
whose names begin wWith the letters 'BT' (for Boot file),
followed by up to 6 letters indicating the particular device
and having an ‘SR’ extension, meaning that it is an assembly
source. BT303:SR is the TM390/303A floppy disk controller
DSR and BT210:SR contains the DSR for the TM990/210 bubble
memory board. You can name your files differently if you
desire.

The DSR program begins at relocatable origin >0000. The
LINKer assigns the final absolute address and resolves all
references. In general, each DSR is called for only 4 disk
numbers. For example, the standard Boot EPROMs call BT303,
the DSR for the 303A, only if PD0OS is accessing disk numbers
0 through 3. This is only a function of BOOT:SR, and you
can vary this if needed.

At the beginning of the program is the LINKAGE TABLE. This
table contains data needed by the BOOT module for proper DSR
operation. The table consists of four (4) jump
instructions, four DATA constants indicating the default
boot sectors of the 4 disks, end a TEXT string (terminated
With ‘@ BYTE 0) which is printed by BOOT for the device
selection prompt.

The four jump entries transfer to the four required DSR
routines. They are: 1) device controller initialization; 2)
@ logical sector read; 3) a logical sector write; and 4)
motor off functions.

The DSR initialization routine is called via a Branch and
Link (BL) 1instruction before booting and during PDOS
startup. Registers RO through R13 may be used and return
address 1is passed in R11. Do not use R14 and R15. Typical
functions performed include resetting the controller,
restoring all disk drives, setting drive dependent
parameters, or sending some other initial commands. If no
controller initialization 1is needed for the device, an RT
return cen replace the JMP instruction in the LINKAGE TABLE.

The logical sector read and wWrite routines are called via a
Branch and Load HWorkspace Pointer (BLWP) instruction.
Parameters are passed to them in registers RO, R1 and R2 of
the calling workspace and, therefore, must be fetched using
R13.

LINK FORMAT:

XDLTxx JMP DINIT

DINIT

DWRIT

JMP DREAD
JMP DHRIT
JMP DSCOF
DATA BSO
DATA BS1
DATA BS2
DATA BS3
TEXT *...',0

RT

CLR 3L3LOCK
INCT R14
RTHP

;INITIALIZE DEVICE
:READ LOGICAL SECTOR
;HRITE LOGICAL SECTOR
;DRIVE OFF (1 SEC)
;BOOT SECTOR 0

;B0OT SECTOR 1

;BOOT SECTOR 2

:BOOT SECTOR 3
;DRIVER NAME

;INITIALIZE DEVICE
,(USE ONLY RO-R13)

,READ LOGICAL SECTOR
SHRITE LOGICAL SECTOR
;CLEAR LEVEL 3 LOCK
,NORMAL RETURN

PDOS 2.4 DOCUMENTATION CHAPTER 8 - DISK DEVICE SERVICE ROUTINES P ' PAGE 8-30

= e e e o e e . o o

(8.3 DSR MODULES continued)

The logical disk number is located in *R13, the logical
sector number to read/write is in 92(R13), and the logical
buffer address is in 3d4(R13). These routines exit with a
Return Horkspace (RTWP) instruction, so registers R13, R14
and R15 must be preserved. I1f no error is encountered, the
Read/Write routines skip over the return address by
executing a 'INCT R14' instruction before returning. If an
error is encountered, the DSR loads the error number into
the calling workspaces RO, by moving *R13, and does not
increment the return address. In either case the level 3
lock flag must be cleared before exiting these routines.

The Motor Off routine is called by PDOS once each second to
service controller devices needing constant attention. This
routine is called via a Branch and Link (BL) instruction,
may only use registers R0, R1, R2 and R12, and exit with a B
*R11 instruction. If no attention is required (e.g. 303A
board), a RT instruction can replace the jump in the LINKAGE
TABLE. This routine could be used wWith a ‘dumb’ floppy
controller to deselect drives after a certain time or turn
off the motors of 6" drives. Certain. locations in POOS,
nemely MOFLG, are available to keep counters for these types
of functions. Care must be taken that more then one OSR
doesn't use the same location as a counter or flag.

Note: NO PDOS calls are legal in a DSR. It does help

system response to swWap to other tasks while waiting for
certain timing loops or particular device events. This can
be done by clearing the task timer, TIME, inside the loop.
(See the subroutine SEEK in BT3300:SR module for an example
of how to pause exactly one second.)

Sometimes, devices require fast, sure response from the
host system. In place of the task lock/unlock primitives,
you simply 'set to ones’' the sWap lock location, SWLOCK, to
inhibit PO0OS from taking control from you. HWhen you are
through, be sure to release the system by unlocking your
process, CLR aSKLOCK.

This still allows the execution of interrupt service
routines, such as the system clock, 9902 characters, and
hardware events. If the timing is too critical for event
these processes to be occurring, then the most drastic
action, disabling all interrupts nith a LIMI 0, must be
used. Be ceareful that you exit from the critical code: 1)
gracefully, restoring the mask to the same level it was
before you zeroed it, and 2) quickly, so that the PDOS
system clock doesn't lose any TICs over your indiscretion.
See the BT303:SR module for a trick to restore the interrupt
mask to its original level.

DSCoOF ... ,ORIVE OFF ROUTINES
coee , (USE ONLY R1-RZ,R12)
RT

NO PDOS calls within a DSR

Swap With CLR JTIME

Lock task: SETO QSHWLOCK

Unlock task: CLR @SHWLOCK

-

PD0OS 2.4 DOCUMENTATION

CHAPTER 8 DISK DEVICE SERVICE ROUTINES

PAGE 8-31

8.4 GENERATING BOOT EPROMS

The boot EPROMs for the standard PDOS systems are generated
With procedure files. The file named DOBOOT:101 generates
the object file from which the TM390/101MA ROMs are burned,
the file named DOBOOT:102 generates the object file from
which the TM380/102 ROMs are burned, and so on. You need to
set the flags in BTFLG:SR before generating any boot
program.

As an example of the method used in generating boot ROMs, a
listing of the file DOBOOT:101 follows:

SF BTFLG:SR
ASM BOOT:SR, #800T ;6

ASM BT303:SR,#BT303;6
ASM BT3374:SR, #BT3314 ;6
ASM BOOTE:SR, #B00TE ;6
LINK

0,800T

8, >F000

1,800T

1,8T303

1,BT3314

8, >FFFC

1,B00TE

LOGO
2,>F000

1,8007

3,)F800, YFFFA,)F812
4,>F800, >FFFF,BOOT
6

RC

Note the the LOGO utility is used only to set the checksum
in the EPROMs. The LOGO command line that sets the checksum
(3,>F800,>FFFA,>FB812) is common to all PDOS systems, since
BOOT:SR uses the same code in all systems to checksum the
ROMs.

Care must be taken when generating ROMs that the modules do
not overlap. The Linker doesn‘t check to see if a location
is addressed more that once, so you must examine the 1link
map file closely, checking the each module's beginning and
ending addresses.

Shon the boot flags
Assemble BOOT and the DSR modules
using those flags

Invoke the Linker

Output to the BOOT file

Set the buffer base to »F000
Link in BOOT and the DSR's

Add the LOAD vector for 101's
List problems

Output the link map for examination
Set entry tag and quit

Exit LINK

Invoke the loader to set the checksum
Set the buffer base

Get the linker output

Set the checksum

Output for burning

Exit LOGO

End of chain file

Checksum from >F800 to >FFFF
and place value in location »F812

POOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES

(8.4 GENERATING BOOT EPROMS continued)

The following is the console output resulting from
executing the chain file, DOBOOT:101, listed above. Note
that only addresses above >FB800 are used since 101 PDOS only
has two 2708 EPROMs, or 2k bytes of memory, for the boot.
Other utilities may be added to the 101 boot program, but
this would require adding two more 2708's to the 101 CPU
card.

.DOBOOT : 101
.SF BTFLG:SR

» BTFLG:SR 09/17/82

" SYSTEM CONFIGURATION FLAGS

-3

FLG101 EQU 1 ;THI90/107M

FLG102 EQU O ;THG90/102

FLGS5S EQU O ;STD THS9995

FLGZ5V EQU 0 ;VIDEO GAMES TMS9995

i3

FLGROM EQU O ;0=RAM, 1=EPROM

FLGAB EQU O ;0=AUTO-BAUD, 1=AUT0-BOOT
FLGSH EQU 1 ;0=NO SHITCHES, 1=SHITCHES
LOV1 EQU 1 ;LOGICAL DEVICE #1 (XOLT01)
LOV2 EQU 1 ;LOGICAL DEVICE #2 (XOLT02)
LOVZ EQU O ;LOGICAL DEVICE #3 (XDLTO03)
LOV4 EQU O ;LOGICAL DEVICE #4 (XDLT04)
L3

NOFF EQU O ;DISK OFF DEVICE #

»

FLGE5 EQU FLGASS!FLGISV

DVSEL EQU LDVA*2+4LDV3*2+LDV2*2+LDV1
.ASH BOOT:SR, #B00T ;6

ASM R2.4

SRCE=BOOT: SR

0BJ=#800T ;6

LIST=

ERR=

XREF=

END OF PASS 1
0 DIAGNOSTICS
END OF PASS 2
0 DIAGNOSTICS

Start the chain file
Shon the flags for verification

Set for 101 system

Set for switches
Set for 303A
Set for 3314

No disk off DSRs

Assemble the general boot program

gﬂ-k

PDOS 2.4 DOCUMENTATION

CHAPTER 8 DISK DEVICE SERVICE ROUTINES

PAGE 8-33

(8.4 GENERATING BOOT EPROMS continued)

.ASM BT303:SR,#BT303,6

ASM R2.4
SRCE=BT303:SR
0BJ=#BT303,6
LIST=

ERR=

XREF=

END OF PASS 1
0 DIAGNOSTICS
END OF PASS 2
0 DIAGNOSTICS

.ASM BT3314:SR,#B73314,6

ASM R2.4
SRCE=BT3314:SR
0BJ=#BT3314,6
LIST=

ERR=

XREF=

END OF PASS 1
0 DIAGNOSTICS
END OF PASS 2
0 DIAGNOSTICS

.ASM BOOTE:SR, #BOOTE ;6

ASM R2.4
SRCE=BOOTE:SR
0BJ=#BOOTE ;6
LIST=

ERR=

XREF=

END OF PASS 1
0 DIAGNOSTICS
END OF PASS 2
0 DIAGNOSTICS

Assemble 303A DSR

Assemble ER3314 DSR

Assemble 101MA LOAD vector module

sazz=o2n

CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-34

T T

(8.4 GENERATING BOOT EPROMS continued)

LLINK
LINKER R2.4
%0, B00T

%8, YF000
WAS 0000
*1,B00T
*1,BT303
*1,873314
*g, YFFFC
HAS >FFDC
*1,BOOTE

*2
UNDEFINED DEF ENTRIES:

Invoke the Linker

Note: didn't overrun EPROM

ISYS$ >0000 USER$ >0000 XDLTO3 >0000 XDLTO4 >0000

®3

MULTIPLY DEFINED DEF ENTRIES: NONE

*4, TEMP

*§

START TAG = >0000
*7

.LOGO

LOGO R2.4

%2 ,)F000

*1,800T

IDT="B00T2.4 '
1DT='B3032.4 *
107T='83142.4 '
IDT="BOOTEV '

ENTRY ADDRESS=>0000
*3,>FB00,>FFFA,>F812
*4 >F800, »FFFF ,B00T
*6

.RC

Exit LINK
Invoke the loader for checksumming

Note: IDT order

Set checksum in object

Exit LOGO
End of chain file

" PDOS 2.4 DOCUMENTATION

CHAPTER 8 DISK DEVICE SERVICE ROUTINES

(8.4 GENERATING BOOT EPROMS continued)

The link map generated above is 1listed belon.

Note that

the last DOSR module, BT3314, is located up to address >FFDC,
indicating that only 30 bytes are available in the EPROMs.
Also, the only undefined external references are 1ISYS$ (the

optional system initialize routine),

USER$ (the optional

auxiliary routine), and the two undefined DRS's, XDLTO3 and

XDLTO4.

.SF TEMP

LINK MAP FILE
TIME=11:49:45
DATE=09/17/82

FILE=B00T

FILE NAME:EXT

o WwWN o

BAUD
BBTTO
BOUTH
BTGC
BTGN
BTPM
BTTO

0303C
DSFLG
1SYS$

L3L0CK

MAIN
MOFLG
PARMS

SHLOCK

TiCsz
TIME
TPS
USER$

XOLT01
XDLT02
XOLTO03
XDLT04

BOOT
BT303
BT3314
BOOTE

F/T

R . S S S - T T . NP N Y

P . Y JITE. S . S

w N
CCUUTC>®» >®» >» >» >» > 0> C>»>>» >» 0T U U U U

107

ENTRY

'B00T2.4 ' >F800
‘B3032.4 ' HFCDA
‘B3142.4 * FEB6
‘BOOTEV ° FFFC

VALUE

YF83C
YFBDC
YFB4A
>FBAA
YFB62
YFB3C
YFBBE
»7060
»7000
»2FBC
»2FDO
»0000
Y2FEB
YFSFE
Y2FD8
»7024
Y2FEA
Y2F88
Y2FEC
»007D
»>0000
>FCD4
>FEB6
»0000
»0000

REFERENCES

#4 P OFFFE

#4 P SFFFC
#2 P >FEN4
#2 P OFD32
#1 P >FBFC
#2 P >FD62

#2 P >FDFC
#2 P >FE42
#2 P >FEO8
#1 P >FBF8
#1 P >FBES
#1 P >FBEA
#1 P >FBEC
#1 P >FBEE

[--PSEG---]

»FO00 >FCD4
»FCD4 >FEB6
YFEB6 >FFDC
>FFFC >0000

#2 P >FE22
#2 P >FD78

#3 P >FF8C

#2 P >FE02
#2 P >FE70

[--DSEG---]
»0000 >0000
»0000 >0000

»0000 >0000
»0000 >0000

#2 P >FE2A

#3 P >FFCC

DEF REF

20 6

1 1

1 2

0 2
#2 P >FE36

DOFLG

1A

Y2FD4

PDOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-36

(8.4 GENERATING BOOT EPROMS continued)

Even though burning the two TMS 2708 EPROMs might be
accomplished in a8 chain file, do this interactively. Either
the BURNP or the BURN302 utility accepts the output from
LOGO for burning the EPROMs. BURNP is an RS232 type burn
progrem where the object is passed to a standalone burner
over an RS232 serial link. The actual burning and
verification of the EPROMs are done external to PDOS.
Therefore, we use the BURN302 utility for this example, so
that the 1loading, burning, end verification can be
demonstrated.

.BURN302
BURN302 R2.4
*NOTE: ALL NUMBERS ARE HEX.

HIGHEST PC=0000
BUFFER LIMITS ARE 0000 TO 7074 *p F800,FFFF,L
0,¢file>,adr> LOAD BINARY FILE liiieeeees +
1,¢file>{, <adr’) LOAD OBJECT FILE iieeeenees +
2,¢adr1>,¢adr2) ,<byte> LOAD EPROM DATA . .ii..... +
A VERIFY BLANK EPROM Lieeeees +
B(,<adr>) SET BUFFER BASE ~ iiiiieeees +
C,¢adr1>,<adr2>,{<adr3>} COMPUTE CHECKSUM . . .ee.... +
E EXIT TO PDOS vesesnesset
I{,¢adr>) SET EPROM INDEX ' cesessnees +
M MODIFY BUFFER MEMORY L eeeees +
<adr1» INSPECT ieeeeeees
<adr1, <adr2> DISPLAY HEMORY VERIFYING
<adr1»,<adr2),<adr3> COPY MEMORY *VF800,FFFF ,L
0,<adr1>,<adr2> ,<file> OUTPUT OBJECT TO FILE *A
P,<adr1),<adr2>,<byte> PROGRAM EPROM *PF800,FFFF,R
S{,<step’) SET STEP e, +
T{, <eprom>} SPECIFY EPROM TYPE L eeee... +
V,<adr1>,<adr2>,<byte> VERIFY EPROM WITH MEMORY +
sg,F000 ., +
HIGHEST PC=000C e +
BUFFER LIMITS ARE FOOO TO FFFF tesessanns +
*,TEMP e, +
ENTRY ADDRESS=0000 .. +
*C,FB00,FFFF e, +
CHECKSUM=0000 e
*A VERIFYING

*VF800, FFFF R
*E

PDOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES

PAGE 8-37

8.5 DSR DEFINITIONS

The following is a summary of all current Device Service
Routines in the PDOS library. The file names, addressing,
and format information is included in en abbreviated form.
Any current restrictions are also listed. Use this
information s a reference only. See the sources for
complete information. The definition of the headings
precedes the actual module information:

Neme: BT<device):SR
Device: Device name and description
Address: Memory mapped and CRU mapped addresses
Formats: Media formats supported, formatting utility name
Boot: Location and format of boot sectors
Boot Sectors: General boot sector number
Memory Usage: Registers and/or system memory locations needed
Size: Module size in decimal bytes [in hexadecimal]
Device DEF: Device number and DEF'd out label name
Restrictions: Other information about the DSR
Errors: Error numbers generated by the DSR and their meanings

8.5.1 BT210:SR

Name: BT210:SR
Device: TM390/210-3 Bubble memory module
Address: Memory mapped at >E100, >E120, >E140, and >E160
Formats: N/A, no formatting necessary
Boot: N/A
Boot Sectors: All at sector 156
Memory Usage: Registers
Size: 272 bytes [>110]
Device DEF: #3=XDLTO3
Restrictions: Bubble boards must be -3 boards (6 bubbles)
Errors: 101=Sector too large
102=Controller timeout

PDOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES

PAGE 8-38

(8.5 DSR DEFINITIONS continued)

8.5.2 BT232:SR

Name:

Device:
Address:
Formats:
Boot:

Boot Sectors:
Memory Usage:
Size:

Device DEF:
Restrictions:

Errors:

8.5.3 BT303

BT232:SR

RS232 communication link

CRU base address at >0180 or >0040 (VG)
N/A, no formatting necessary

N/A

A1l at sector 1846

Registers

326 bytes [>146)]

#3=XDLT03

Slave system must be executing RS232 as a
background task. Communication is at 9600 baud.
101=Invalid response

102=Line timeout

103=No acknowledge

¢ SR

Neme:
Device:
Address:

Formats:

Boot:
Boot Sectors:
Memory Usage:

Size:

Device DEF:
Restrictions:
Errors:

BT303:SR

TM990/303A floppy controller

CRU base address at »0200

DMA sector transfers.

Single and double sided, double density 8" floppy
Use the FRMT303 utility '
Single sided, double density, tracks 72-75
A1l at sector 1846

Registers

»2FBC~»2FCF Command table

»2FD0->2FD3 Double sided flags (DSFLG)

434 bytes [>1B2] (102 CPU is larger)
#1=XDLT01

Uses high extended address lines
102=Controller timeout

108=Mapper boundary violation

110=Sides not disk compatible

others are RO and R1 words combined

PDOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES

PAGE €-39

f (8.5 DSR DEFINITIONS continued)

8.5.4 BT3300:SR

Name:
Device:
Address:

Formats:

Boot:
Boot Sectors:
Memory Usage:

Size:

Device DEF:
Restrictions:
Errors:

BT3300:SR

ER3300A floppy controller

Memory mapped at >E000->EQ1F

CRU mapped at >0400->047F

Single sided, single and double density 5" floppy
Use the FRMT93 Utility

Single sided, single density, tracks 30-39
A1l at sector 300

Registers

»2FD4->2FD7 Double density flags (DDFLG)
»2FD8->2FDB Motor off flags (MOFLG)

492 bytes [»1EC]

#4=XDLT04

Don’t work PAUL.

101=Sector too large

102=Not ready/controller timeout

103=Hrite protected

104=Hrite fault

105=RNF/Seek error

106=CRC wrong

8.5.5 BT3314:SR

Name:
Device:
Address:

Formats:
Boot:
Boot Sectors:

Memory Usage:
Size:

Device DEF:
Restrictions:

f’-. Errors

BT3314:5R

ER3314 SASI interface

Memory mapped at >E020->E03F

CRU mapped at >0480->04FE

Peripheral defined, use the FRMTH utility

N/A

0 = 16288

1 = 16288

2 = 1846

3 = 3856

Registers

342 bytes [»156]

#2=X0LT02

Must be assembled for enabled or disabled
interrupts during data transfers. Disk numbers
0 and 1 select logical device 0. Disk number 2
selects logical device 2 as a SAB00 type device.
Disk number 3 selects logical device 3 as a
SA850 type device.

: 102=Controller timeout

2004SAS1 Error code

PDOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES

PAGE 8-40

(8.5 DSR DEFINITIONS continued)

8.5.6 BT95VG:SR

Name:
Device:

Address:

Formats:

Boot:
Boot Sectors:
Memory Usage:

Size:

Device DEF:
Restrictions:
Errors:

BT95VG:SR
TMS9809 based MOED 1095 single board computer
Video Games TMS9995 based SBC
Memory mapped at >F860->F8SF
CRU mepped at >0140->015E
Single and double sided, single density 5" floppy
Use the FRMTVG utility
Single sided, single density, tracks 30-39
A1l at sector 300
Registers
>2FD0-»2FD3 Double sided flags (DSFLG)
Y2FDB->2FDB Motor off flags (MOFLG)
414 bytes [*19E]
$1=X0LT01
9909 has problems
300-303=0rive not ready after 1.25 (RESTORE)
304-311=Recalibrate drive errors
312-315=TRK 00 .NE. PTRACK (0-3)
316-319=Drive not ready after 1.256 (FORMAT)
320-323=Rates not defined

329=Hrite protect on FORMAT
332-335=0rive not ready after 1.26 (READ)
336-339=Rated not defined

340=Hard sector not found

341=ID sync bytes not found

342=10 address mark not found

343=ID CRZ error

344=1D bytes not found

348=Lata sync or AM not found

346=Data o/flow error

347=Dstz CRC error
348-351=Drive not ready after 1.25 (WRITE)
352-355=Rates not defined ' ‘

356=Hard sector not found

357=10 sync bytes not found

358=1D address mark not found

359=10 CRC error

360=ID bytes not found

381=Diskette srite protected

362=Data u/flon error

363=Data u/flon error (FORMAT TRACK)

-

PDOS 2.4 DOCUMENTATION CHAPTER 8 - DISK DEVICE SERVICE ROUTINES

PAGE 8-41

(6.5 DSR DEFINITIONS continued)

8.5.7 BTFDCl:SR

Name:

BTFDC1:5R

Device: G H Three FDC-1 STD floppy controlier

Address:

Formats:

Boot:

Boot Sectors:

Memory Usage:

Size:
Device DEF:
Restrictions:

Errors:

1/0 mepped at >EFCO->EFCF

Singie end Double sided, Single and Double density,
&" or 8" floppies

Use the FRMTFDCT utility

Single sided, single density 5"

Single sided, double density 8"

A1l at sector 300 for B"

A1l at sector 1846 for B"

Registers

»2FDO-y2FD3 Double sided flags (DSFLG)

»2FD4->2FD7 Double density flags (DDFLG) -
»2FD8->2FDB Motor off flags (MOFLG)
YF020-)F029 On chip RAM stuff

678 bytes [»2A6]

#1=X0LT01

Mixing 5" & 8" drives not supported, though
possible

101=Sector & tco large

102=Not ready

103=Hrite protected

104=hrite fault

105=RNF/Seek error

106=CRC wrong

107=Lost data

189=Controller timeout

PDOS 2.4 DOCUMENTATION CHAPTER 8 OISK DEVICE SERVICE ROUTINES

o o o o

PAGE 8-42

(8.5 DSR DEFINITIONS continued)

8.5.8 BTWINC:SR

Name:

Device:
Address:
Formats:
Boot:

Boot Sectors:

Memory Usage:
Size:

Device DEF:
Restrictions:

Errors:

BTHINC:SR

Micro/Sys host adaptor for STD bus

1/0 mapped at >EFS0-)EF93

Peripheral defined, use the FRMTWS utility

N/A

0 = 16288

1 = 16288

2 = 1846

3 = 3856

Registers

340 bytes [>15A]

#2=XDLT02

Non-DMA device. Non-1403D (256 us) support. Disk numbers
0 and 1 select logical device 0. Disk number 2
selects logical device 2 as a SABOO type device.
Disk number 3 selects logical device 3 as a
SAB50 type device.

102=Controller timeout

2004SASI Error code

SENTESLTRERBESsRnRIRETERnd

_PDOS 2.4 DOCUMENTATION ~— . CHAPTER § DISK DEVICE SERVICE ROUTINES

£ 00 i o 23 0 o e oy o 0 o' oo 3 4o 00 v @2 a3 00 2 0. ey 0 e e

PAGE 8-43

8.6 AN EXAMPLE

The following listing is a skeleton of & generalized Device
Service Routine. To create a new DSR, use this framework
and add the actual code needed by the device. You cannot
use error numbers 0 through 98, These are raserved for PDOS
and BASIC.

* BT (name» : SR (date>

L »
w (device definition and summary> #
x ®
* XDLT<#%> where <#> = 01, 02, 03, 04 ®
L ”»

L
TITL ' (DSR titley ’
IDT '<DSR idt>’
»
® LINKAGE TO BOOT:SR
K
DEF XDLT<H> ;DEVICE LINK TABLE
*®
REF TIME JTASK TIMER
REF DSFLG JDOUBLE SIDED FLAG
REF DDFLG :DOUBLE DENSITY FLAG
REF L3L0OCK SLEVEL 3 LOCK
£ 3
COPY BTFLG:SR ;GET FLAGS
n
s o o o R R A AR
® ¢devicey CONTROLLER CONFIGURATION
3
BPS EQU 256 1256 BYTES/SECTOR

(device parameters and equates?
<e.g. CRU bases, step rates, biases

30000 00 o120 3) 0 K 4 1 o 0 0 5 o 6 10 50 0 0 23 o 3 43 (29 € a0 I 2 8 € A O) D A 0 9 P e 2 e S B 0 e o . e B 2
b etded bbbt e e b e R e e e e e e R ——as

PDOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES

o 0 a0 o 2 am e ot oo 020 2 st 0 e e i 0 0 o e o 3
RERERaNEIRSESRISRERIRTIVIBITES S e S

(AN EXAMPLE continued)

LINKAGE TABLE

XOLT<¢#>

XDLTE

RORG 0

JMP XINIT ,INITIALIZE DRIVE ENTRY
JMP XREAD ,READ SECTOR ENTRY

JMP XWRIT JHRITE SECTOR ENTRY
JMP XDOFF ,DISK OFF ENTRY

DATA <boot sector #0> ;DISK #0 BOOT SECTOR
DATA <boot sector #1> ,DISK #1 * "
DATA <boot sector #2> ;DISK #2 * "
DATA <boot sector #3> ;DISK #3 "
IFN FLGSW,XDLTE

TEXT '<device name>' JDRIVE NAME

BYTE O

EVEN

<device> INITIALIZATION ENTRY

XINLT

MOV R11,R13 ,SAVE RETURN
¢Can use all registers except R14 & R15

B *R13 JRETURN

Lot AR

E 3

¢device> DISK OFF ENTRY

B

XDOFF

EQU ¢ ,DISK OFF
(Use only registers RO-R2, and R12)

B *R11 ,RETURN

<device> READ SECTOR ENTRY

XREAD

EQU $;READ SECTOR
{get read parameters)

JMP XCRW ,GOTO COMMON R/W ROUTINE

PDOS 2.4 DOCUMENTATION - ' CHAPTER.8 ~DISK DEVICE SERVICE ROUTINES

.......... o o o o

PAGE 8-45

<

(AN EXAMPLE continued)

<device> WRITE SECTOR ENTRY

XHRIT

XCRH

EQU $ JWRITE SECTOR

(get write parameters)

COMMON R/W ROUTINE

MOV *R13,RO JGET DISK #
ANDI RO,>0003 ;MOD(UNIT,4)
MOV @2(13) ,R1 ;GET SECTOR NUMBER
Cl R1,¢size? ,SECTOR OK?
JH ER101 JN, ERROR
MOV 24(13) ,R2 Y, GET BUFFER ADDRESS

<read/nrite routines’
<RO = disk #

(R1 = sector #>

<R2 = buffer address>

OPERATION SUCCESSFUL EXIT

INCT R14 ,SUCCESSFUL. OPERATION

XRHRT

ER101

COMMON RETURN

CLR aL3LOCK JCLEAR LOCK FLAG
RTHP
LI RO,101 ,SECTOR TOO LARGE

ERROR

ERROR PROCESSING

MOV RO,*R13 JRETURN ERROR #
JHMP XRWRT
END XDLT<H#>

PDOS 2.4 DOCUMENTATION . . CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-46

o o e o o e v o

