
==~=== - .
PDOS 2.4 OOCUHENTATION . .. OfAPTER 8 Dl~ bEvltE SERVICE ROUTINES PAGE 8-1

. . ,· .

===
r· .~·

CHAPTER 8

DISK DEVICE SERVICE ROUTINES

This c:hepter explains the DSR forll8t, the environ~~~~nt in
Hhich it operates, and hoH to alter the par ... ters in the
standard DSRs to cust0111ize thell to your system's needs. In
addition, the follOHing discussion exa.1nes the features of
the generalized boot progr811, called BOOT:SR, gives a
detalled ex11111ple of hoH to wite a completely neH OSR, and

tells hoH to LINK and burn a neH Boot EPROH.

8.1 lNTRODUCTlON ••• 8-3

8.2 BOOT:SR ..•.......••...•..•...••.•...••••••••••..••... 8-4

8.2.1 BOOT ENTRY ADDRESSES ••••••••••••••••••••••• 8-4
8.2.2 BTFLG:SR- BOOT PARAHETERS ••••••••••••••••• 8-7
8.2.3 BOOT PROGRAH •••••••••••• ~ ••••••••••••••••• 8-10

8.2.3.1 lSYS$ LINKAGE ••••••••••••••••••• 8-14
8.2.3.2 DSR UNKAGE ••••••••••••••••••••• 8-15
8.2.3.3 HEHTEST ••••••••••••••••••••••••• 8-21
8.2.3.4 HEHORY INSPECT/CHANGE ••••••••••• 8-21
8.2.3.5 OTHER BODT •••••••••••••••••••••• 8-22
8.2.3.6 HAKE BOOT ••••••••••••••••••••••• 8-22
8.2.3.7 USER$- AUX UTlLlTIES ••••••••••• 8-23

8.2.4 SYSTEM BOOT ••••••••••••••••••••••••••••••• 8-24

8.2.4.1 DEVICE SELECT!ON •••••••••••••••• 8-24
8.2.4.2 AUTO-BOOT ••••••••••••••••••••••• 8-26
8.2.4.3 AUTO-START •••••••••••••••••••••• 8-26

8.2.5 BOOT SUBROUTINES •••••••••••••••••••••••••• 8-27

8.2.5.1 BTTO •••••••••••••••••••••••••••• 8-27
8.2.5.2 BBTTO 8-27
8.2.5.3 BTGC •••••••••••••••••••••••••••• 8-27
8.2.5.4 BTGN .••...•••••••.••.•••••..•••• S-28
8.2.5.5 SOUTH 8-28
8.2.5.6 BTPH 8-28
8.2.5.7 XDITB 8-28

8.3 DSR MODULES ... 8-29

==================================~==========~-;=!=•==============================--======================================
PODS 2.4 DOCUHENTATlON CHAPTER 8 0~ D.EVlCE SERVICE ROUTINES PAGE 8-2

===============--=============================-----=-===========--===================--======================================

(CHAPTER 8 DISK DEVICE SERVICE ROUTINES continued)

8.4 GENERATING BOOT EPROHS •••••••••••••••••••••••••••••• 8-31

8.!5 DSR DEFINlTIONS ••••••••••••••••••••••••••••••••••••• 8-37

8.5.1 BT210:SR •••••..••.•••••••••••••••••••••••• 8-37
8.5.2 BT232:SR •••••••••••••••••••••••••••••••••• 8-38
8.5.3 8T303:SR •••••••••••••••••••••••••••••••••• 8-38
8.5.4 BT33DO:SR ••••••••••••••••••••••••••••••••• 8-39
8.6.6 BT3314:SR ••••••••••••••••••••••••••••••••• 8-39
8.5.6 BT95VG:SR ••••••••••••••••••••••••••••••••• 8-40
8.5.7 BTFDC1:SR ••••••••••••••••••••••••••••••••• 8-41
8.5.8 BTNlNC:SR ••••••••••••••••••••••••••••••••• 8-42

8.6 AN EXAHPLE •.••••••••.•.....•••..•••••••••••••••••••. S-43

==-==
PODS 2.4 DOCUHENTATION CHAPTER 8 DISK DEVICE ~RIJlCE ROUTINES PAGE B-3

b;.'·'

===

8.1 INTRODUCTION

PODS uses read and Hrite sector primitives to interface to
secondary storage devices. This hardHare independence
allOHs for floppy or Hinchester disks, magnetic tapes,
bubble memories, external RAM or even another c:omputer as
candidates for 'disks' in PDOS. No modification of the
operating system itself is required and all PODS features
remain unchanged. This is accomplished by using EPROM
resident Device Service Routines (OSRs).

A OSR is a softHare module that is external to the
operating system, and contains a specific set of.entry
points, parameter tables, and linker references. The OSR is
required to perform a defined set of functions Hith regard
to a particular storage device. 1f some functions are not
needed, the OSR must gracefully ignore the operating
system's calls. HoHever all defined entries must be

incorporated into the OSR (e.g., device initialization or
motor off.)

OSRs are Hritten in assembly language and linked to the
general boot program module, BOOT:SR, using the LINK
utility. This process might seem overHhe1ming at the
outset, but you should remain calm and read this chapter
carefully. It is helpful to get a listing of one of the
standard OSRs, such as BT303:SR or BT3314:SR, and look for
the various features as they are discussed. Don't despair;
someone Heaker than yourself has successfully Hritten a OSR.
The process is a bit complicated, but the rules are Hell
defined and complete.

HardHare independent

Interfaces through R/H sector

Device Service Routines

OSRs in assemb 1 y 1 anguage

===~·=--==
PDOS 2.4 DOCUMENTATION CHAPTER 8 OlSK OEVlCE SERVICE ROUTINES PAGE 8-4

'; .. ,
==--==

8.2 BOOT:SR

All PDOS systems, regardless of the hardHare, use a boot
program residing in EPROM for pOHer-up start. One assembly
language module is the basis for the EPROHs in all PODS
systems. The source code for the program is a file called
BOOT:SR. This module contains the start-up code for each
PODS system, the boot program itself, and all the necessary
linkage to PDOS. The folloHing sections describe ell of the
entry addresses · in the boot program and the system
definition flags, Hhich come from a file called BTFLG:SR. A
general discussion of the boot program's features is
fo110Hed by an explanation of the available system boot
options. Subroutines in the boot progr8111 are externally
defined for incorporation into the optional user Hritten
EPROM routines.

The size of BOOT:SR is less than 21< bytes, depending on the
system flags. lt must be included in ell boot EPROHs and be
linked first. The start-up code, if any, is located at the
begiming of the ROM, and the major portion of the program
resides up from >F800.

8.2.1 BOOT ENTRY ADDRESSES

The PODS boot EPROHs contain read and Hrite logical sector
routines, called Device Service Routines (DSR), and a system
boot program. Entry addresses are at address >FBOO and
include controller initialization and motor off routines.
Other functions of the boot EPROMs consist of a memory test,
a memory inspect/change utility, make boot facilities, and
entry into user EPROM program.

The read and Hrite sector OSRs are the link betHeen PODS
and secondary storage devices. Reference to a 256 byte
sector is by disk number (RO), logical sector number (R1),
and buffer address (R2). Errors are returned in register
RO. These errors are device dependent, range from 100 to
32768, and are defined by the individual device service
routines.

Read and Hrite logical sector
System boot
Memory inspect and change
Memory test

RO=disk I
R1=1ogical sector
R2=buffer address

~
)

===--===--======
PDOS 2.4 DOCUHENTAT!ON OfAPTER B . DISI(DEVICE SERVICE ROUTINES PAGE B-5 ,.
===-- ---------- -===----==

(8.2.1 BOOT ENTRY ADDRESSES continued)

Memory addresses >FOOD through >FFFF are reserved for EPROM
routines. The boot EPROHs for a TH990/101 system reside at

memory addresses >FBOO through >FFFF. POOS 102 and STO are

mapped at address >FOOO through >FFFF. All use entry points
located at address >FBOO through >FB1F. These are defined

as folloHS:

>FBOO

>FB04

READ LOGlCAL SECTOR. XRSE and XRSZ

primitives pass RO, R1, and R2 to this

routine. (5ee 5.2.11 READ SECTOR.)

HR! TE LOGICAL SECTOR. XHSE passes RO,
R1, and R2 to this rdutine. (See 5.2.23
HR!TE SECTOR.)

>FBOB INITIALIZE LOGICAL SECTOR. X!SE passes

RO, R1, and R2 to this routine.

Initialize sector is equivalent to Hrite
sector except that no POOS 10 check is

made on the header sector. (See 5.2.7
!NIT SECTOR.)

>FBOC lN!TlALlZE CONTROLLER. This routine is

called once via a "BL' instruction
before POOS system initialization.
Device dependent initialization

procedures are handled here.

>F810 MOTOR OFF ROUT!NE. This routine is

called once every second via a 'BL'
instruction and is for controller
devices, Hhich need constant attention.

Such is the case Hith 5" mini-floppies,

Hhich require the motor to be turned off

after a period of inactivity.

AORG >FBOO
BOOTY B iiiXRSEZ

B iiiXHSEZ
B iiiX!SEZ
B iiiXD!TC
RT

; READ SECTOR

;HR!TE SECTOR
;INITIALIZE SECTOR
;!NIT CONTROLLER
;MOTOR OFF (IGNORED)

=====';"'== -========== ---==---=-=--============:JIIIl=======·======u:=-==;---===·=============-==== ========================:-===---=
PDOS. 2.4 DOClJIENTATlON CHAPTER 8 · DISK DEVICE SERVICE RtiJTltES

-= = ====-== -.

(8.2.1 BOOT ENTRY ADDRESSES continued)

>FFFC LOAD VECTOR. This address in the
EPRCJia contains the cold atrt-up vector
addreaaes used by the boot ROHa. This
address is only required by the 101
POOS, since the 101 CPU card IIUSt up
the EPROHs at >FSOO.

>0000 RESET VECTOR. This address is needed
by those POOS systau that II8P the EPROM

· Jlt• addr'ess >0000 . on poMer-Up. . 1hese
: .. arst• subaequently 118P'RAH at location
•· •OOIJD and the EPROM is, ll8fiP8d high at

)fQOO; .. The strt-up code that does the
IIIIP. flipping resides at the beginning of
the EPROH, Hith the RESET vector
locations >0000 and >0002 containing the
address of the boot progr•.

Note that the >FSOO addresses above re actually at >EBOO
on the 9996 sac fro~~ Video Galles since the l/0 devices on
that board re mapped at >FBOO. The strt-up code for the
Video GaJDes board copies the EPROH up into RAM at >EOOO, n
the boot progr• then executes fro~~ thet location.

PAGE 8-6
-=-x

I~

===--========-- --~ ----==
PODS 2.4 DOCUMENTATION CHAPTER 8 DISK,. DEVICE SERVICE ROUTINES PAGE B-7
===--===~==-===

8. 2. 2 BTFLG: SR - SYSTEM FLAGS

Each file, including BODT:SR, should include the boot flags
during assembly. Executing a 'COPY BTFLG:SR' in the source
code accomplishes this. Thus, every file knoHs Hhether or
not the system has SHitches, Hhat CPU card is used, and
Hhich devices are present. File 'BTFLG:SR' is listed to the
right. A description of each flag folloHs:

FLG101

FLG102

FLG955

FLG96V

setting this flag to a 1 configures the
assembly of BOOT:SR and the DSR modules
for a TH990/101HA system. A zero means
that the EPROHs are for another system.

setting this flag to a 1 configures the
assembly of BOOT:SR and the DSR modules
for a TH990/102 system. A zero means
that the EPROHs are for another system.

setting this flag to a 1 configures the
assemb 1 y of BOOT: SR and the DSR modu 1 es
for a G H Three 9996/STO system. A zero
means that the EPROHs are for another
system.

setting this flag to 8 1 configures the
assembly of BOOT:SR and the DSR modules
for a Video Games 9996 system. A zero
means that the EPROHs are for another
system.

Note that exactly one of the above four flags IIUSt be set
to a 1 and the other three set to zero in order for the
BOOT:SR assembly to HDrk.

* BTFLG:SR 09/20/82

• SYSTEM CONFIGURATION FLAGS

*
FLG101 EQU 1 ;TH990/101H
FLG102 EQU 0 ;TH990/10Z
FLG95S EQU 0 ; STD THS9996
FLG95V EQU 0 ;VIDEO GAMES THS9995
*
FLGROH EQU 0 ;O=RAH, 1=EPROH
FLGAB EQU 0 ;O=AUTO-BAUD, 1=AUTO-BODT
FLGSH EQU 1 ;O=NO SHlTCHES, 1=5HlTCHES
LDV1 EQU 1 ;LOGICAL DEVICE 11 (XDLT01)
LDVZ EQU 1 ;LOGICAL DEVICE 12 (XDLT02)
LDV3 EQU 0 ;LOGICAL DEVICE 13 (XDLT03)
LDV4 EQU 0 ;LOGICAL DEVICE 14 (XDLT04)
*
NOFF EQU 0 ;DISK OFF DEVICE I
*
FLG95 EQU FLG95S!FLG96V
DVSEL EQU LDV4*2+LDV3*2+LDV2*2+LDV1

.,

== =======·..;.; --===---======--=======-=====-====-==============---------====·=============-=========-======
PODS 2. 4 DDCUHENTATION PAGE 8-8
======·=====-=-====== :=•====-=--==--- ---- ========--==-=-====-=•=•::; •===-=--=---======-• ==•z=•===-=:==============--•===-=====:;====' ======--=•

(8.2.2 BTFLG:SR - SYSTEH FLAGS continued)

FLGROH

FLGAB

FLGSH

LDV1
LDVZ
LDV3
LDV4

It is possible to burn into EPROM the
complete 101 PODS system and have it
reside LON, at addr'ess >0000. In this
syste~~, the OSRa are addressed at >2800
8nct the an--. d RAH is upped at >FOOD
for syst• variables. N'len USIIIb11ng
the R/H aectcr. routines from BOOT:SR for
an EPIOt 101 PODS, set this flag the a
1. lN ALL OTHER CASES, this flag IIWit
be zero.

Setting this flag to a 1 config~.rea the
IISSIIIIbly of BOOT:SR to auto-boot the
PODS syst• into 11e110ry Hi thout user
intervention. A zero II88I'IS that the
EPAOHs are to auto-baud the port and

Hait for '1fU' selections. ZERO IS Tt£
NORMAL VALl£ FOR THIS FLAG.

Setting this flag to a 1 config~.rea the
assembly of BOOT:SR for a syst• that
reads ..,_ SHi tches. A zero 1188n8 that
the EPROHs are for a syst1111 that has no
SHi tches, such as the STO PDOS syst•.
H1th no SNitches, the boot progr• goes
ttrough the select device -.-a
described later in this chapter. Only
the standard 101 PODS EPROHs are
configw-ed for sense SNitches (FLGSH=1);
ALL OTHER PODS SYSTEMS SET FLGSH TO
ZERO.

These four f 1 ags correspond to the four
devices supported by BOOT:SR. Setting
any of these flags to a 1 canfig~.rea the
8SS8IIb 1 y of BOOT: SR to as:n.ae that the
corresponding OSR is to be linked into
the EPROM and that the XDLT<I> is
defined. This means that the OSR is in
the EPROM and NOT that the device is
necessarily installed in the syst•.
Detet"llining the latter is done c:kring
the running of the program by the device
select logic (either SNitches or
prompts). A zero Hans that the
corresponding OSR is not to be linked
into the EPROHs. These flags are only
used to conditionally SSHIIble in one of
the feu- device initialize cells
nothing too drastic.

FLGROH = o = Nonaal boot syst•
1 = PODS tn EPROM

FLGA8 = 0 = Nor•l boC)t procedure
1 = A htays auto-boot

FLGSit a 0 = No SHi tches
1 = SNitches

LDV1 • 0 = Disks o-a not installed
1 = Disks D-3 installed

LDV2 • 0 • Disks 4-7 not installed
1 = D1sks 4-7 installed

LOVI • 0 = Disks 8-11 not installed
1 = Disks 8-11 installed

LDV4 = 0 = Disks 12-99 not installed
1 = Disks 12-99 installed

= ---- - =----- --- ---- -~-=====~===== •rmrm====--===--============--===== ==
PODS 2.4 DOCUMENTATION CHAPTER 8 Dlstc bEVlCE SERVICE ROUTlt£5 PAGE 8-9
-- :=-=====-=-= ==-==-====-===·=·=·=;.~=========-==----==--==================

(8.2.2 BTFLG:SR - SYSTEM FLAGS continued)

NOFF

FLG95

DVSEL

Setting this flag to a nu.ber. fr011 1 to
4 configtres the assellbly of BOOT:SR to
call the Disk Off entry of ·· the
corresponding DSR IIOdule. The standard
boot progr• can only call this entry
for one device, but 110re can be

supported by altering BOOT:SR itself. A
zero means that none of the devices
needs to be serviced by the · Disk Off
routine Hhi le PODS is nnling.

If this flag is a 1 then the EPRDHs are
for a POOS system using a THS 9996 CPU.
A zero means that the EPRDHs are for a
THS 9900 systee. This flag siiiPlY tells
BDDT:SR Nhere to locate the HOrkspace
for the boot progru: at >7000 for 9900
systeiiS or at >FD80 for 9995 systees (in
the on-chip RAH). This flag is
aut011atically defined and should not be

altered.

This flag is a combination of the
logical device flags Hith the devices
bit encoded. lt is currently not used

by BOOT:SR, but is 111ade available for
use in other modules.

NCFF = D = No disk off routine required
1 = Disks D-3 required disk off service
2 = Disks 4-7 required disk off service
3 = Disks 8-11 required disk off service
4 = Disks 12-99 required disk off service

FLG96 = D = THS 9900 system
1 = THS 9995 system

DVSEL = XDDOO
\\ _ Disks D-3 installed
\\ _ Disks 4-7 installed
_ Disks 9-11 installed
_ Disks 12-99 installed

=============================----=====--=== • ·--==--===---======-- =======:-
PDOS 2.4 DOCUHENTATlON CHAPTER 8 DISIC J:EVlCE SERVICE ROUTINES PAGE 8-10

. i .~ .

==--===- -------:==--======== -----=======----=-======================-------- ---===

8.2.3 BOOT PROGRAM

The bootstrap progr• begins executing on the 101HA via the
LOAD vector at ll8lftOI"Y address >FFFC. All other PDOS
systeu, the 102, STD and Video GeMs versions, begin
executing the boot progr• via the RESET vector at II8IIOf'Y
address >0000. There is no HaY to up EPROH at address
>FFFC in these syst81118. If auto-boot has been either
selected by a SNitch (101HA CPU and 102 Nith 307 for
SNitches) or burned into the boot progr• EPROH (FLGAB = 1),
then the progru proceeds to boot the syste111 from the 1 ONest
installed disk device. OtherNise, the program Haits for a
character on the main CPU port.

The uin NOrkspace used by the boot program is at location
>7000 for the PODS systems using the THS 9900. The THS 9996
based PODS systems locate the uin NOI"kspace in the on-chip
RAH at location >FOBO. Various parameter locations fallON
the main NOrkspace and a secondary NOrkspace, used for
calling the R/H sector routines Nhile booting, is located 64
bytes (>40) above the begiming of the main Norkspace (at
>7040 and >FOCO, respectively). This is follCINed by a
buffer, Nhose address is externally defined for use by the
DSRs and user routines.

The first character entered is timed and used to set the
b8Ud rate of the Hin console port. This is referred to as
euto-bauding a port. A carriage return auto-bauds all ports
correctly.

After the port has been bauded, the boot progr811 tests the
Data Set Reedy (DSR) signal in the main port. If no DSR is
present the boot progru prints an error message to alert
you that PODS Hill not output to the terminal.

If a system initialization subroutine is present in the
EPROHs, the boot program calls it, lSYS$, using a Branch and

Link instruction. OtherNise the boot program procaeds to
sum memory from >FSOO to >FFFA. lf this sum is nonzero,
then a 'CHECKSUM ERROR' message is reported, indicating that
something has happened to the EPROHs and could be a source
of problems. The checksum is set by the LOGO utility before
the EPROHs are burned. The location that is altered for the
checksum is >F812.

TH990/101HA = >FFFC
TMBII0/102, STD = >0000

Main NOI"kspace = >7000 (or >FOBO for 9995)

Secondary NDrkspace = >7080 (or >FOCO for 9995)

Auto-baud uin port

9902 initialized for 11 bits:
1 strt bit
7 bit character
1 even parity
2 stop bits

Test DSR high
OSR LOH

ca 11 lSYS$ I if present

OleckSUIII EPR0H
CHECICSUH ERROR

==~-=====~===
PDOS 2.4 DOCUHENTATlON OfAPTER 8 DISK DEVICE 8Vl~ ROuTINES PAGE 8-11

===~==

(8.2.3 BOOT PROGRAM continued)

Next, you uy be queried as to Hhich storage devices are

installed. This occurs only Hhen there are no configuration

SNitches available, such as Hith a TH990/102 or SBC95/1

system. A single 'Y' character selects the device.

Anything else ignores the device, even though the DSR is
1 inked into the EPROM.

Finally, the PDOS boot menu is displayed. You mey noN

select fr011 various functions including:

<CR> ,D-99 System boot from disk numbers 0 through

99. Boot sector constants Hi thin the

EPROHs select the correct default sector

of the boot. Auto-boot or a carriage

return selects the lOHest numbered

storage device installed. See DEVICE

SELECTlON.

100 System 111e110ry test (100). A pass is

made through memory Hriting randall data

and then a second pass verifies .amory

content.

101 Memory inspect and change (101).

System memory is examined, altered, or

copied. Both a hexadecimal and an ASCII

dump is provided.

102, 103 OTHER BOOT (102) and HAKE BOOT (103)

routines. A system boot from any

logical sector is done by the OTHER BOOT
routine. The HAKE BOOT routine Hrites

IJieJIIOr'Y from >0000 to >6000 to any disk I
begiming at any logical sector number.

104 AUX programs (104). Other routines are

placed in the 1 OHer ha 1f of the EPROH

space (>FOOO through >F7FF) and called

via an entry from the externally defined
1 abe 1 USER$.

105 Go to PDOS (105). Although not in the

menu message, entering a 105 executes a

BLHP a>OOOO. This is provided so that a

boot that is aborted mey be continued

Hithout rebooting.

<LOAD vector>

<carriage return>

SELECT TH990/3037 Y

SELECT ER33147
*PDOS BOOT R2. 4

D-99=800T

.100=HEHORY TEST

101=IAC

102=800T
103=HAKE BOOT
104=AUX

7
System boot

Hetlory test

{Optional}

{Optional}

Memory inspect and change

Boot and meke. boot

Auxi 1 i ary progra11

GOOD

==--=====-==========----====----=====================================
PODS 2.4 OOCUHENTAT!ON CHAPTER 8 DlsK QEV.tCE S!RV.tCE ROUTINES PAGE 8-12
===============--========--===================-==~ --===~--~=========--====----==============================--=========

(8.2.3 BOOT PROGRAM continued)

The folloNing flOH diagram incHcates the main features of
the boot program.

101MA 10Z STD

1. Initiate boot program LOAD RESET RESET
Nith EPROM at address: >FSOO >0000 >0000

Set map information in: '612
Copy EPROM high

SNap EPROM high Nith: CJ(QN sao
EPROM at address: >FOOO >FOOO

2. Go to BAUD routine

Auto booting?

Yes, go to system boot routine

No, reset main 9902 and baud the port

3. Test for OSR high on main port

Not high, print error message

4. Branch to system initialization routine !SYS$

(optional, user supplied)

5. Plecksum EPROHs from >FSOO to >FFFA

lf nonzero sum, print error message

6. If no sNitches assembled in then

Ask to select each device present and

set bits in ORSEL

VG

RESET
>OOOD

LDCA

HOV
LDCA

>EOOO

BAUD - Auto-baud main port

CJ(SH - Checksum EPROM and .

ask for devices

===----======-=======--===--=======
POOS 2. 4 llOCUHENTA TlOH CHAPTER 8 ·DISK DEVICE SERVICE ROUTINES PAGE 8-13

==----===--=~=-~===

(8.2.3 BOOT PROGRAM continued)

7. Output boot menu and get reply

If I < 100 then go boot system

!f I > 100 then go to BOOT utility or user routine

8. Auto select disk fr0111 disk 0, 4, 8 or 12
based on the SHitch settings

9. Save disk I and boot sector I in PARHS

10. Print 'BOOT..·

11. Initialize all devices present by
calling all lN!T DSR entries

12. Clear sides and density flags and boot the systa

13. Set auto-start and disk I for PODS

14. Check auto-boot

1f auto-booting, just GOOO

1f not, test for a character

15. Check for interim character

1 f character, return to HA!N

lf not, print 'HIT RETURN'

16. Go to PODS Hith a BLHP a>OOOO
and exit BOOT progr81R

MAIN - Output menu and get reply

HA!N04 - Select a boot disk
from the SHitches- (get laMest)

HA!N06 - Boot PDOS system

GOOD - Go to PODS

;::===-====-===
PODS 2.4 DOCUMENTATION CHAPTER 8 ', DlSK DEVICE SERVICE ROUTlNES PAGE 8-14

• •<> •

==~-=--===

8.2.3.1 ISYS$ LINKAGE

Sometimes it is desirable to call a routine from the boot
program only once. This is done Mith the System
Initialization routine. This routine, if present, is called
once via a Branch and Link instruction after the port is
bauded and immediately before the EPROM is checksummed. All
registers may be used Mithout affecting BOOT operation.
Possible uses for the lSYS$ routine include prompting the
user for a disk step rate constant, printing a long page of
instructions, or performing some other one-time procedure.

The standard 101, 102 and Video Games PODS EPROHs do not
use an lSYS$ routine. The standard STD PODS EPROM uses
!SYS$ to set the stepping rate constant for the FD1793
Floppy controller Chip. (See 'lSSTD:SR' for an example of
!SYS$.)

To Hrite a routine, simply set the or1g1n at relocatable
>0000 and externally define the label lSYS$ equal to the
subroutine entry point. Since the address to return to the
boot program is passed in R11, the !SYS$ routine is exited
Hith a B *R11, or its equivalent. Any of the BOOT:SR
subroutines may be used in the !SYS$ module.

lSYS$

DEF lSYS$
RORG 0

; ENTER ROUTINE

==~==~==~==~===
PDOS z . .f;DOCUHENTATION CHAPTER 8 , DlSI<,.;OEV!CE SERVICE ROUTINES PAGE 8-15
===~====?~=~======~==

8.2.3.2 DSR MODULE LINKAGE

System constants, locations, and subroutine addresses
defined by the BOOT:SR program are externally defined for
use in the OSRs and the user programs. The 1 ist to the
right is extracted directly from BOOT:SR. The DEF'ed
entries are defined as follOHs:

TICS2

TIHE

TPS

This label is the address of the PODS
system 16-bit time counter, It is
incremented every time the system clock
interrupts (each TIC). Possible DSR
uses include Haiting for a certain
number of seconds (use TPS to calculate
one second) and checking elapsed time.

This label is the address of the PDOS
system location of the current task
timer. Hhen a task is scheduled, it is
loaded Hith the number of TICs the task
is alloHed. Each subsequent clock
interrupt decrements TIME·. Hhen it goes
to zero or negative, PDOS sHaps to the
next task. This counter can be cleared
at any time by a DSR to avoid Hasting
CPU time Hhile Haiting for an elapsed
time or for a completion signal.

This label is a system constant equal
to the number of TICs, TIME increments,
that constitute one second in real time.
One possible DSR use is to Hait one
second, by sampling TICSZ at the
beginning, calculating the delta TICs in
a loop and comparing the difference to
the constant TPS.

D303C This label is the address of the PODS
system location of a ten HOrd meaory
block used by the BT303:SR DSR to pass
to the 303A the R/H sector command list.
These locations are only used in BT303
on the TH990/101HA system so that the
paging ER3Z32 RAH cards can be used Hith
the 303A controller.

*

*

*

DEF TICS2,TIHE,TPS
DEF D303C,L3LOCK,SHLOCK
DEF DSFLG,DDF~G,HOFLG

DEF BAUD,BHS,IBHS
DEF HAIN,PARHS,BUFF

OEF BTTO,BBTTO,BTGC
DEF BTGN,BOUTH,BTPH
DEF XDlTB

* USER ROUTINES

*
REF USER$;USER UTILITIES
REF ISYS$;SPECIAL INITIALIZATION

*
** '
* REQUIRED LINK PARAMETER LIST
**
*
* ;UNIT THg9Q STD95 VG

*
REF XDLT01 ;D-3 303A FDC/1 9909

REF XDLTOZ ;4-7 ER3314 SASI RSZ32
REF XDLT03 ;B-11 210 RS232
REF XDLT04 ;12-99 ER33DO

===-~=--===
PODS 2.4 DOCUHENTATlON CHAPTER 8 OlSK DEVICE'SERVlCE ROUTINES PAGE 8-16

===

(9.2.3.2 DSR MODULE LINKAGE continued)

L3LOCK

SHLOCK

This label is the address of the PODS
system locjl,tion of the level 3 lock.
This location locks out all other task's
from executing level 3 disk routines.
PODS sets L3LOCK to ·-1 before it
branches to the R/H sector routines.
Every DSR MUST clear this lock before
exiting back to PDOS, so that others
(including himself) can enter again.
Non-DHA OSRs should 'ASS at.3LOCK' at the
beginning of the routine to alloH page
SHapping.

This label is the address of the PODS
task lock flag. Hhen non-zero, PODS
does not SHap, regardless of hoH many
TICs go by. This is the lock flag that
is ~t and reset by Hith the XLKT and
XULT primitives. One possible DSR use
is to lock out the execution of other
tasks during time critical device
servicing, to avoid data overruns. Note
that this lock only inhibits all other

. tasks from executing, NOT all other
code. The clock interrupt routine
continues to $)Cecute as Hell as other
interrupt processors, such as characters
or hardHare events, even though SHLDCK
is set. For more time critical parts of
DRS code, a LIHI 0 must be executed to
inhibit even the cloCk from
interrupting. But beHare, or the system
real time clock can lose TICs.

DSFLG This label is the address of a four
byte disk sides table. Each byte
corresponds to one disk: a zero
indicates that the disk is single sided
and a)FF indicates double sided. The
floppy disk OSRs normally set these
flags from byte 30 of the header sector,
after any successful reading of sector
0. This allOHs the DSRs to
automatically handle both single and
double sided media, transparent to the
user.

__ ,.,...

====~=======================================~=-~~ ==aa··~~=·=·~- ·===================--===========================
PDOS Z. 4 00Cli£NT ATlON - ' - : .. - - CHAPTER 8 "DlS« DEVICE SERVICE ROUTINES PAGE 8-17
==-==

(9.Z.3.Z DSR MDDULE LINKAGE continued)

DOFLG This label is the address of a fcxr
byte disk density table. Each byte
corresponds to one disk: a zero
indicates that the disk is single
density and a >FF indicates double
density. The floppy disk DSRs nor•lly
set these flags from byte 31 of the
header sector, after any successful
reading of sector 0. This allOHS the
OSRs to automatically handle both single
and double density formatted .adia,
transparent to the user.

HOFLG This label is the address of a four
byte 110tor on tab 1 e. The use of these
locations varies Hith different DSRs.
For BT3300, each byte corresponds to one
disk. Hhenever a disk is accessed, e
byte constant of 10 is loaded,
indicating a ten second timeout. Hhen
PODS calls the DOFF entry of the DSR,
the logic decrements each positive byte
and turns off the corresponding drive
motor if it equals zero.

The 12 byte flags described above can be redefined for .ny
purpose by the user, if the devices that ~se the• are not to
be 1 inked. See the DSR definition section for a list of

' Hhere they are used.

BAUD This label is the address of the BOOT
routine that auto-bauds the uin port
and continues on the start the boot
program.

SHS This label is the address of the BOOT
program's main Horkspace.

IBHS This label is the address of the BOOT
progrBIIIS's secondary HOrkspace. This is
used by BOOT for R/H sector calls, but
you can use it for other BLHPs in your
auxiliary routines.

==--=============================--================
PODS 2. 4 DOCUHENT ATlON CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-18
=====--===~~~~~~~=~~==

(8.2.3.2 DSR HODULE LINKAGE continued)

HAlN This label is the address of the BOOT
program routine that prints the main
menu and prompts for user selection.
This is the address that a USER$ routine
branches to Hhen returning the the boot
program.

PARHS This label is the address of the BOOT
program's parameter list. This and the
subsequent locations store the
parameters entered Hhen the boot program
subroutine BTGN is called. See the
subroutine
details.

definition section for

BUFF This label is the address of the BOOT
program's buffer area and points just
beyond the secondary HOrkspace.

STTO This label is the address of the BOOT
program subroutine Hhich outputs the one
or tHO characters in RD. See the
subroutine
details.

definition section for

BBTTO This label is the address of the BOOT
program subroutine Hhich outputs the one
or tHO characters folloHing the cell, in
*R11. See the subroutine definition
section for detei ls.

BTGC This label is the address of the BOOT
program subroutine Hhich gets a
character from the main port into the
HSB of RO. See the subroutine
definition section for details.

BTGN This label is the address of the BOOT
program subroutine Hhich outputs a
prompt message and gets either a
carriage return or a list of decimal
numbers. The numbers are converted to
binary, stored in order beginning at
location PARMS, and the lest one entered
is passed back in R1. See the
subroutine definition section for
details.

===========================;:;===--=-.-==-::====.=i!i.•••••.'!lill"''" ·····-==-==-=···==· .. == = ·========----==========
POOS Z.4 oociJHENTATlON . ::' . .. CHA.PTER.-S ·~~JJEVl(IMvlCI AGUTlHES PAGE 8-19
====···=--=--~==========--===============~:~-~--:-:--:-.j. f.tT.U 3 ,__,.. I I I ''=•-==-==========-=--============

(8.2.3.2 DSR HODULE LINKAGE continued)

SOUTH This label is the address of the BOOT.
progr• subroutine Hhich outputs the
hexedeciul value of R3 to the uin
port. s.e the subroutine def1n1t1on
section for details.

BTPH This label is the address of the BOOT
program subroutine Hhich outputs the
MSSage Hhose address :·:. i.ediately
follOHS the call, in *R11. See the
subroutine definition section for
details.

XDITB This label is the address of the BOOT
progr811 subroutine Hhich calls the
initialize routine of all the installed
DSRs. This can be ~ . in fqrut
routines and the USER$ progrM. See the
subroutine definition section for
details.

The follOHing label are externally referenced by BOOT:SR,
or REF'd in, and IIUSt be externally defined, or DEF'd out,
by DSRs and USER$ routines. BOOT:SR assetllbles default
routine and table addresses so that if no subsequent moduli,
either DSR or user routine, externally defines the fo11CJM1n8
labels, then the boot program ignores the call altogether.

USER$ This label is the entry address of the
auxiliary routine that you 1 ink into the
boot EPROHs. See the USER$ 1 inkage
section for ~~ore details.

lSYS$ TM s 1 abe 1 is the entry address of the
systeM initialization routine that you
link into the boot EPROHs. See the
lSYS$ linkage section for 110re details.

XDLT01 This label is the address of the DSR
link table for device 11. Hhen this
device is installed and selected, any
PODS calls for disk nulbers 0-3
reference this table. This label IIIUSt
be externally defined, or DEF'd out, by

the DSR module for device 11.

Labels deftftld irt BOOT:SR

==:::===--==--===--======--===--====-=====:llli'-Jillllll\llllllilliiiiiCI:c=WIIliW:C:*******~ijiiWIIIUilltlll IIIW:IIIIIW:W....--=:=•=:-::::::::=:=- :===-==-====

PDOS 2.4 OOCUHENT-ATION ~;. · CHAPlfR · 8 'DlSI(DEVG tiRVIC:I ROUTlNES
===:;::::==~?================================~=:ib==• 11 ~ · ·i · ui' •i•·· · ., : 1 ======r•

(8.2.3.2 DSR tm.l.E UNKAGE continued)

XDLT02

xm.T03

xm.T04

This label is the address of the DSR
link table for device 12. Hhen thts
device is installed a1d selected, any
PDOS calls for disk numbers 4-7
reference this table. This label IIIUSt
be externally defined, or DEF'd out, by
the DSR IIIOdule for device 12.

This label is the address of the DSR
link table for device 13. Hhen this
device is installed and selected, any
PDOS calls for disk numbers 8-12
reference this table. This label IRUst
be externally defined, or DEF'd out, by
the DSR IIIOdule for device 13.

This label is the address of the DSR
link table for device 14. Hhen this
device is installed and selected, My
PDOS cells for disk nu.bers 12-99
reference this table. This label IIUSt
be externally defined, or DEF'd out, by
the DSR IIOdule for devtee 14;'· .· The
default boot sector index into the DSR
link table for these devices is equal to
the disk runber modulo 4. For exiiiiPle;·
booting from disk 52 begins at the .
sector indicated by the first, or disk
0, boot sector entry since 52 is
congruent to zero, modulo 4.

·.I

Dtaka 4-7

Disks 8-11

Dtska 12..gg

PAGE 8-20
·=====--==- -'-'!:'-----==

~
I

==========~:::::ii:::i:::::::::::::ii:::i:,:::::,;;:=::::::::c:~.::.i:i::==#:=-=."' I I !II II 'Ifill IIUI ===-V"II: r

POOS 2.4 DOOJHENTATION CHAPTER., a·:·:OlSJCOEVU$ 8VKI ROUTINES
. ---------=========

PAGE 8-21
======================~===;=========.::_:.:._====~=~~--~•==-=-==-==~ :=t==:-=c=ac===· -=·----- --========

8.2.3.3 MEMTEST

Option 100 of the boot EPROHs selects a II8IIOry test
routine. An optional second decimal parueter is used to
select a memory test range other thwl from >0000 to >7000.
The routine first passes through metiiOI"y, Hriting randoll
data. A second pass is then lll8de to verify the data. For
each successful 11e1110ry pass, a per.iod and bell are output to
the console. lf an error occurs, the address is printed
along Hith the exclusive OR of the data read and the correct
data. To exlt the ~~emory test, you must restart the boot
progr811 Hi th either the RESET or LOAD vector.

8.2.3.4 MEMORY INSPECT/CHANGE

Using the metiiOI"Y inspect and change, system ~~~e~~ory is
ex•ined, altered, or copied. Both a hexadeciul and an
ASCll dullp is output. There is no prOIIIPt. ltlen the cursor
is the extr81118 left, any one of the follOHing three modes is
invoked.

Inspect and Change
......

To ex•ine and alter a 11181110f'Y location, input one hex
number fo110Hed by a carriage return. The location address
is output, follOHed by a colon and the contents of the
location. Entering a hex number alters that location. A
space bar increments the location by 2 and the next
location's contents are displayed for alteration. A •tnus
(-) decrements the location and a control C cancels any
input. An escape exits to the boot progr811 menu. Entire
Hords are altered, so single byte changes are not possible.

Memory Dump

To exuine a block of 1181101"'Y, input tHO. hex I'Uibers,
separated by a space or comu. The 11e110ry contents fra. the
first address through the second address displays to the
terminal in both a hexadeci•al forut, and in an ASCll
forut (ignoring the uppermost bit). If the character
represented by a byte is not printable (i.e. less that >20),
then a period is printed in its place. A space bar
momentarily halts the output and then restarts the display. ,
An escape returns to the boot progr• menu.

?100,67312
?100,63211
?100,49120
?100,46024
?100,40928
?100,3683%
?100,32738

Tests >DOOO->EOOO
Tests >OOOD->0000
Tests >DOOO->COOO
Testa >OODO->BOOO
Tests >0000->AOOO
Tests >0000->9000
Tests >Q000->8000

==~===============--====================================
PDOS 2.4 DOCUMENTATION CHAPTER 8. PIS~ P,~VICE !IRV1tf ROOTINES PAGE 8-22
===~===

·,·"..\.

(8.2.3.4 MEMORY INSPECT/CHANGE continued)

Memory Copy

To copy one block of memory into another, input three hex
numbers, separated by single spaces or ccililmas. The memory
contents from the first address through the second address
copies into.a block· starting at the third address. The copy
mode uses a move byte (HOVB) instruction so that odd address
boundaries are possible. This can be used as a memory test.
Remember that the 102 map registers at >0080 and the boot
Horkspace at either >7000 or >FOOD must not be disturbed.

8.2.3.5 OTHER BOOT

A system boot is read into memory from any desired disk
number beginning at any logical sector number by using the
OTHER BOOT option. Since the default boot sector number is
in EPROM, OTHER BOOT is useful Hhen booting from a
non-standard disk, or for checking the ability to Hrite data
to and read it back from a device. The OTHER BOOT routine
reads data from any disk I beginning at any logical sector
number into memory from >0000 to >6000. The reply to the
prompt is disk I, comma and sector 1. As Hith SYSTEM BOOT,
if you hit 8 character from the console during the boot
process, the program booted is not entered. Instead,
control returns to the boot program menu and prompt.

8.2.3.6 MAKE BOOT

A system boot is Hri tten to any desired disk number
beginning at any logical sector number by the HAKE BOOT
option. This is useful in backing up the PODS boot to
another disk, or for checking the ability to Hrite data to
and read it back from 8 device. The HAKE BOOT routine
Hrites memory from >0000 to >6000 to any disk # beginning at
any logical sector number. The reply to the prompt is disk
#, comma and sector #. Any errors are reported and control
returns the the boot program menu and prompt.

~T,SCT=

UNT I SCT=1 I 10D98<CR>

UNT1 SCT=
UNT1 SCT=,,1B46<CA>

~- : -·' . . ···- ...
===-==
PODS Z. 4 · tlOCUHENTA TION . CHAPTER 8 DlSK DEVICE SERVICE ROUTINES PAGE 8-23

=========================~===

8.2.3.7 USERS - AUX UTILITIES

If there is room left in the boot EPROHs, you can add
auxiliary routines. These modules are linked Hith BOOT:SR
and the other DSR modules. Care IRUSt be taken that there is
enough room for all the routines. Simply set the origin at
relocatable >0000 and externally define the label USER$
equal to the routine entry point. Then the boot menu
selection 104 branches to your routine. Upon transfer to
the USER$ routine:

R13 points to the character output routine ,BBTTO
R14 points to the get hex routine, BTGH
R16 points to the output hex routine, SOUTH

All boot subroutines may be used. Hulhple auxiliary
routines are added by making another menu as the main
routine. To exit from the routine and return to the main
boot menu, you must branch to the external reference MAIN.

USER$

DEF USER$
RORG 0

REF MAIN

;ENTER ROUTINE

B aMAIN ;EXIT

==--======================
PDOS 2.4 DOCUMENTATION CHAPTER B DISK DEVICE SE~VltE ROUTINES PAGE B-24
===~======--===================--=====-~===--===========================

8.2.4 SYSTEM BOOT

The boot program needs to tHo Hhich devices are installed
in the system and Hhether or not to auto-boot. The first is
obtained from either the sense SHitches or from responses
from the operator. The second comes from either the sense
SHitch or the BTFLG:SR flag, FLGAB. If the auto-boot
feature is taken, then PDOS performs an auto-start, too.

BODT:SR uses system memory locations in PODS to pass this
information to POOS initialization. First, the memory byte
at location >0070 (Hhich is in the XOP 12 vector location),
is the auto-start flag for PODS. If it is zero, PODS
auto-bauds the port and prompts for the date and time as
usual. If it is non-zero, PODS does not auto baud, but
executes the file SY$STRT instead. If either the auto-boot
feature is selected or byte >DD70 is non-zero on the boot
disk, then the auto-start is initiated.

Second, the memory byte at location >DD71 (also in the XOP
12 vector), is loaded byte the boot program Hith the disk
number from Hhich the system Has booted. PODS loads this
value into the default system disk number for task 0 at
system initialization.

If no sense sHitches are used, the boot program loads the
memory Hord at location >2FFE Hith a bit encoded value Hhich
tells the R/H sector handler in BOOT:SR Hhich devices are
installed. The least significant bit of the memory Hord
corresponds to device 11 and the bit is set if the device is
installed.

Hhen booting the system, the boot program calls the
appropriate OSR read sector routine Hith BLHP instruction,
just like PODS does. HoHever, the secondary boot HOrkspace
is used.

8.2.4.1 DEVICE SELECTION

Device selection information is given to the boot program
by either sense sHitches or through an operator prompt
sequence. Only the 1D1 and 1D2 PODS systems may have sense
sHitches, but all PODS systems may be configured to use the
operator prompts.

===
PDOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-25
===

(8.2.4.1 DEVICE SELECTION continued)

SENSE SWITCHES

Some PODS systems have sense SHitches available to read
under program control. These are the THggQ/101HA CPU and
the TH990/102 CPU used in conjunction Hith a THSg0/307 I/0

card. The standard 101 PODS EPROHs use sHitches to select
devices and auto-booting. The standard 102 EPROHs and all
other PODS systems do not assume that sHitches are present,
but rather they use the operator prompt sequence for
determining devices present.

The BOOT:SR program defines the function of the THggQ/101HA
SHitcheS as follOHS:

51 = ON = Auto-boot & execute 'SY$STRT'
52 = ON.= 303A controller (UNITS 0-3)
53 =ON = 3314 Hinchester controller (UNITS 4-7)
54 = ON = 210-3 bubble card (UNITS B-11)
56 = ON = 3300 floppy controller (UNITS 1z-gg)

~ These SHitch definitions are included in BOOT only if
FLG101 equals 1 and FLGSH equals 1.

To assemble a 102 EPROM Hith 307 SHitches, set FLG102 equal
to 1 and FLGSH equal to 1. The BOOT:SR program then defines
the function of the TH990/307 SHitch pack sa as folloHs:

SB = OFF = Auto-boot & execute 'SY$STRT'
57 = OFF = 303A controller (UNITS 0-3)
56 = OFF = 3314 Hinchester controller (UNITS 4-7)
55 = OFF = 210 bubble card (UNITS 8-11)
54= OFF= controller #4 (UNITS 12-99)

The special assembler option, #, is used to either assemble
the sHitch logic (#=1) or the select logic (11=0).

OPERATOR PROMPTS

Hhen no SHitches are available, the BOOT program prompts to
select those devices Hhose DSR's Here assembled into the
EPROM are currently present in the system. The message from
each DSR is output, preceded by the Herd 'SELECT' and

folloHed Hith a question mark. You simply enter a ·y·, if
the device is in the system, or a carriage return, if not.
This sets bits in the location DRSEL. DRSEL is used by the
boot to determine legal d1sk numbers.

FLG101 EQU 1
FLGSH EQU 1

FLG102 EQU 1
FLGSH EQU 1

SELECT 303A ?

;SELECT 101
;USE SHlTCHES

;SELECT 102 CPU
;ASSUME 307 IN

==-----===== ===·. --- ' . =i;. 1 -==-=-=t:======--= -== 2 • :: ---======:" =· =======-==============-====---
PODS 2.4 ooct.IHENTATlON · owr.Ta~ 8 DISK DEVltE :SERVICE ROUTINES PAGE 8-26
mrm====== • •= JC ==- -~-==·=i.:.==== ·?· - ;...,;._,.;=_==·======== = ==========-==-======================= =========-=-

(8.2.4.1 DEVICE SELECTION continued)

Only one device DSR is called for Disk Off service. This
device is indicated to BOOT:SR by the flag NOFF. If set to
zero, no 110tor off D5R entries are called by the EPROM. If
HOFF is set equal to 1, then the)([LT01 device motor off
8'1try is called once a sec:cnd (if it is present).

8.2.4.2 AUTO-BOOT

The PODS boot EPROHa ~ the facility to .. au.t011atica11y
boot PODS into IWI.· inct set the auto-start;tl- at IIIIOf"Y
byte address >0070.' on' il ni99oi101HA systeli~"this option is
selected by SNitch 11 on the CPU card. Other systeu

require external SNitches or hard coded auto-boot. If the
flag FLGAB in the BTFLG:SR file is set to a 1, then the
resulting boot EPROHs auto boot ev8'1 Hithout SNitches.

8.2.4.3 AUTO-START

If the auto-st.,t f'-8 .(byte >0070) is: non-~> . theii PDOS
auta.atically executu the ·file ,...., ·'SY$STRT' on the
syst• disk. ere t be taken that a baud port COialnd
(SP) is executed under control of the 'SY$STRT' file, since
the syst• console port is not auto-bauded.

The file type of 'SY$STRT' indicates hoH the file is to be
executed. Normally, it is a procedlre file (typed AC) Hith
the first COIIIIII8nd being a BAUD PORT (SP) for the console
port. Other co•anda !light include config~ring other user
tasks and the starting of a tU"ff-key application progr•.
The naae of the auto-start file is changed using the BFlX
utility. If byte >70 on the boot disk is non-zaro,
auto-start is 8'1tred regrdless of the SNitch setting of
the value of FLGAB in the ROMs.

Byte location >0071 is loaded Nith the boot disk ,..,_.

after the system is booted and just before a 'BI.HP a>OOOO'
is executed. PDOS loads the default~· systeJI, d't$' J'Uiber fra.
this location. Thus, the system ca.es' uP using the ...
disk fr011 Hhich 1t NU booted,

NOFF EQU 0 ;NO MOTOR OFF DEVICE

NOFF EQU 4 ;OOTS 12-99 REQUlRE SERVICE

SHi tch 1 ON = Auto boot

FLGAB EQU 1 ; AUTo-BOOT H/0 SHITCHES

.SA SY$STRT ,AC

.SF SY$STRT
SP 1,19200
SP 2,9600
SY 1
LV 10
HENJ
RC

·-

)0070 = Auto-start flag
)0071 = lnitiel default disk I

===
PODS 2.4 DOCUHENTATION CHAPTER B DISK DEVICE SERVICE ROUTINES PAGE 8-27
===

8. 2. 5 BOOT SUBROUTINES

BDDT:SR externally defines some of its utility subroutine
addresses so that they are available for user rout1nas. The
fo110H1ng summary defines the function and register usage of
each. These subroutines may be used in USER$ and ISYS$
modules, but usually not by DSRs. HOHever, for debug
purposes they might even come in hendy for outputting
characters on retries or intennecHate error numbers.

8.2.5.1 BTTO - OUT RO

Function: This routine outputs to the main port, the
character(s) in RD.

Ca 11 sequence: Ll RD, 'OK'
BL aBTTO

Registers: Destroys R9 & R12.

8,2.5.2 BBTTO - OUT *Rll

Function: This routine outputs to the main port, the
character(s) follOHing the call.

Ca 11 sequence: BL &TTO
DATA 'OK'

Registers: Destroys R9 & R12.

8.2.5.3 BTGC - GET CHARACTER AND ECHO

Function: This routine gets a character from the main port,
stores it in the left byte of RD, and echoes it
if it is printable.

Ca 11 sequence: BL iBTGC

Registers: Destroys R9 & R12.

===
PODS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-28
===

(8.2.6 BOOT SUBROUTINES continued)

8.2.5.4 BTGN - GET NUMBER

Function: This routine outputs a prompt message, gets a series
of decimal numbers separated by commas, and returns
the last number entered in R1. All the numbers are
stored in order beginning at location iPARHS, Hith
the next un-entered parameter zeroed.

Call sequence: BL iBTGN
DATA PROMPT ;MESSAGE TERMINATED H!TH BYTE 0
DATA PROBLEM ADDRESS ;ROUTINE TO HANDLE ILLEGAL CHAR
<CR> RETURN ;CR ONLY

NORMAL RETURN

Registers: Destroys RO-R3 & R9-R12.

8.2.5.5 BOUTH - OUT HEX R3

Function: Outputs to the main port the hexadecimal value
of R3. Only 4 characters are output.

Call sequence: BL aBOUTH

Registers: Destroys RO, R2-R6, R9 & R12.

8.2.5.6 BTPM- PRINT MESSAGE

Function: Output to the main port the message Hhose
address immediately folloHs the call.

Call sequence: BL iBTPM
DATA MES01

Registers: Destroys RO, R1, R5, R9 & R12.

8.2.5.7 XDITB - INIT DEVICES

Function: Initialize all devices present for format
or IN!T utilities.

Call sequence: BL iXDITB

Registers: Depends on the OSR's called.

=================~===~===

PODS Z. 4 OOCUHENT A TlON CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 9-Z9
==.====~==

8. 3 DSR MODULES

All PDOS Device Service Routines come fro• source files
Hhose na•es begin Hith the letters 'BT' (for Boot file),
follOHed by up to 6 letters indicating the particular device
and having an 'SR' extension, meaning that it is an assembly
source. BT303:SR is the TH990/303A floppy disk controller
DSR and BTZ10:SR contains the DSR for the TH990/Z10 bubble
memory board. You can name your files differently if you
desire.

The DSR program begins at relocatable origin >0000. The
LINKer assigns the final absolute address and resolves all
references. In general, each DSR is called for only 4 disk
numbers. For example, the standard Boot EPRDHs call BT303,
the DSR for the 303A, only if PDOS is accessing disk numbers
0 through 3. Thb is only a function of BDOT:SR, and you
can vary this if needed.

At the begiming of the program is the LINKAGE TABLE. This
table contains data needed by the BOOT module for proper DSR
operation. The table consists of four (4) jump
instructions, four DATA constants indicating the default
boot sectors of the 4 disks, and a TEXT string (terminated
Hith ·a BYTE 0) Hhich is printed by BOOT for the device
selection prompt.

The four jump entries transfer to the four required DSR
routines. They are: 1) device controller initialization; Z)
a logical sector read; 3) a logical sector Hrite; and 4)

motor off functions.

The DSR initialization routine is called via a Branch and
Link (BL) instruction before booting and during POOS
startup. Registers RO through R13 may be used and return
address is passed in R11. Do not use R14 and R15. Typical
functions performed include resetting the controller,
restoring all disk drives, setting drive dependent
parameters, or sending some other initial commands. lf no
controller initialization is needed for the device, an RT
return can replace the JHP instruction in the LINKAGE TABLE.

The logical sector read and Hrite routines are called via a
Branch and Load Horkspace Pointer (BLHP) instruction.
Parameters are passed to them in registers RO, R1 and RZ of
the calling Horkspace and, therefore, must be fetched using
R13.

LINK FORMAT:

XOLTxx

D!NlT

DREAD
DHRIT

JHP DIN!T
JHP DREAD
JHP DHR!T
JHP DSCOF
DATA BSO
DATA 851
DATA 9S2
DATA BS3
TEXT ' ... ' ,0

RT

CLR iil.3LOCK
INCT R14
RTHP

;INITIALIZE DEVICE
; READ LOGICAL SECTOR
;HRITE LOGICAL SECTOR
;DRIVE OFF (1 SEC)
;BOOT SECTOR 0
;BOOT SECTOR 1

; BOOT SECTOR 2

;BOOT SECTOR 3
;DRIVER NAME

;IN!TlALllE DEVICE
;(USE ONLY RO-R13)

;READ LOGICAL SECTOR
;HRITE LOGICAL SECTOR
;CLEAR LEVEL 3 LOCK
; NORMAL RETURN

===
PODS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE S~RVICE ROUTINES PAGE 8-30
===

(B.3 DSR MODULES continued)

The logical disk number is located in *R13, the logical
sector number to read/Hrite is in d2(R13), and the logical
buffer address is in a4(R13). These routines exit Hith a
Return Horkspace (RTHP) instruction, so registers R13, R14
and R15 must be preserved. If no error is encountered, the
Read/Hrite routines skip over the return address by
executing a 'INCT R14' instruction before returning. If an
error is encountered, the DSR loads the error number into
the calling Horkspaces RO, by moving *R13, and does not
increment the return address. In either case the level 3
lock flag must be cleared before exiting these routines.

The Motor Off routine is called by PODS once each second to
service controller devices needing constant attention. This
routine is called v1a a Branch and Link (BL) instruction,
may only use registers RO, R1, RZ and R1Z, and exit Hith a B
*R11 instruction. If no attention is required (e.g. 303A
board), aRT instruction can replace the jump in the LINKAGE
TABLE. This routine could be used Hith a 'dumb' floppy
controller to deselect drives after a certain time or turn
off the motors of 6" drives. Certain locations in PODS,
namely MOFLG, are available to keep counters for these types
of functions. Care must be taken that more than one DSR
doesn't use the same location as a counter or flag.

Note: NO PODS calls are legal in a DSR. It does help
system response to sHap to other tasks Hhile Haiting for
certain timing loops or particular device events. This can
be done by clearing the task timer, TIME, inside the loop.
(See the subroutine SEEK in BT3300:SR module for an example
of hoM to pause exactly one second.)

Sometimes, devices require fast, sure response from the
host system. In place of the task lock/unlock primitives,
you simply 'set to ones' the sHap lock location, SHLOCK, to
inhibit PODS from taking control from you. Hhen you are
through, be sure to release the ~ystem by unlocking your
process, CLR dSHLOCK.

This still allOHs the execution of interrupt service
routines, such as the system clock, 9902 characters, and
hardHare events. If the timing is too critical for event
these processes to be occurring, then the most drastic
action, disabling all interrupts Hith a LIHI 0, must be
used. Be careful that you exit from the critical code: 1)
gracefully, restoring the mask to the same level it Has
before you zeroed it, and Z) quickly, so that the PODS
system clock doesn't lose any TICs over your indiscretion.
See the BT3D3:SR module for a trick to restore the interrupt
mask to its original level.

DSCDF

RT

;DRIVE OFF ROUTINES
;(USE ONLY R1-RZ,R1Z)

NO PODS calls Hithin a DSR

SHap Hith CLR iTIHE

Lock task: SETO iSHLOCK

Unlock task: CLR iSHLOCK

===
PODS 2.4 DOCUMENTATION CHAPTER B DISK DEVICE SERVICE ROUTINES PAGE B-31

===

8.4 GENERATING BOOT EPROMS

The boot EPROHs for the standard PDOS systems are generated
Hith procedure files. The file named OOBOOT:101 generates
the object file from Hhich the TH990/101HA ROMs are burned,
the file named OOBOOT:102 generates the object file from
Hhich the TM990/102 ROMs are burned, end so on. You need to
set the flags in BTFLG:SR before generating any boot
program.

As an example of the method used in generating boot ROMs, a
listing of the file OOBOOT:101 folloHs:

SF BTFLG:SR
ASH BOOT:SR,#BOOT;6
ASH BT303:SR,#BT303;6
ASH BT3314:SR,#BT3314;6
ASH BOOTE:SR,#BOOTE;6
LINK
O,BOOT
B,>FOOO
1,BOOT
1,BT303
1,BT3314
B,>FFFC
1,800TE
2

3
4,TEMP
6
7

LOGO
2, >FOOO
1,BOOT
3,>FSOO,>FFFA,>F812
4,>FBOO,>FFFF,BOOT
6
RC

Note the the LOGO utility is used only to set the checksum
in the EPROHs. The LOGO command line that sets the checksum
(3,>FBOO,>FFFA,>FB12) is common to all POOS systems, since
BOOT:SR uses the same code in all systems to checksum the
ROMs.

Care must be taken Hhen generating ROMs that the modules do
not overlap. The Linker doesn't check to see if a location

!""""" is addressed more that once, so you must examine the 1 ink
\

map file closely, checking the each module's beginning and
ending addresses.

ShOH the boot flags
Assemble BOOT and the OSR modules
using those flags

Invoke the Linker
Output to the BOOT file
Set the buffer base to >FOOO
Link in BOOT and the OSR' s

Add the LOAD vector for 101's

List problems

Output the link map for examination
Set entry tag and quit
Exit LINK
Invoke the loader to set the checksum
Set the buffer base
Get the linker output
Set the checksum
Output for burning
Exit LOGO
End of chain file

Checksum from >FBOO to >FFFF
and place value in location >F812

-- --------

===
PODS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE B-32
===

(8.4 GENERATING BOOT EPROHS continued)

The follOHing is the console output resulting from
executing the chain file, OOBOOT:101, listed above. Note
that only addresses above >F800 are used since 101 PODS only
has tHo 2708 EPROHs, or 2k bytes of memory, for the boot.
Other utilities may be added to the 101 boot program, but
this HOUld require adding tHo more 2708's to the 101 CPU
card.

.DOBOOT:101

.SF BTFLG:SR
BTFLG:SR 09/17/82

* SYSTEM CONFIGURATION FLAGS

*
FLG101 EQU 1 ;TM990/101H
FLG102 EQU 0 ;THg9Q/102
FLG95S EQU 0 ;STD THS9995
FLG95V EQU 0 ;VIDEO GAMES THS9995
>!<

FLGROM EQU 0 ; O=RAM I 1=EPROH
FLGAB EQU 0 ;O=AUTO-BAUD, 1=AUTO-BOOT
FLGSW EQU 1 ;O=NO SHITCHES, 1=SHITCHES
LDV1 EQU 1 ;LOGICAL DEVICE #1 (XDLT01)
LDV2 EQU 1 ;LOGICAL DEVICE #2 (XDLT02)
LOV3 EQU 0 ;LOGICAL DEVICE #3 (XDLT03)
LOV4 EQU 0 ;LOGICAL DEVICE #4 (XDLT04)

*
NOFF EQU 0 ;DISK OFF DEVICE #

*
FLG!:!5 EQU FLG95S!FLG95V
OVSEL EQU LDV4*2+LDV3*2+LDV2*2+LDV1
.ASH BOOT:SR,#BOOT;S
ASH R2.4
SRCE=BOOT:SR
OBJ=#BOOT;S
liST=
ERR=
XREF=

END OF PASS 1
0 OlAGNOST!CS
END OF PASS 2
0 DIAGNOSTICS

Start the chain file
ShoH the flags for verification

Set for 101 system

Set for SHitches
Set for 303A
Set for 3314

No disk off DSRs

Assemble the general boot program

==--==
PODS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-33

===

(8.4 GENERATING BOOT EPROHS continued)

.ASH BT303:SR,#BT303;6
ASH RZ.4
SRCE=BT303: SR
OBJ=#BT303;6
LlST=
ERR=
XREF=

END OF PASS 1
0 DIAGNOSTICS
END OF PASS 2
0 DIAGNOSTICS
.ASH BT3314:SR,#BT3314;6
ASH R2.4
SRCE=BT3314:SR
OBJ=#BT3314;6
LIST=
ERR=
XREF=

END OF PASS 1
0 DIAGNOSTICS
END OF PASS 2
0 DIAGNOSTICS
.ASH BOOTE:SR,#BOOTE;6
ASH R2.4
SRCE=BOOTE:SR
OBJ=#BOOTE;6
LlST=
ERR=
XREF=

END OF PASS 1
0 DIAGNOSTICS
END OF PASS Z
0 DIAGNOSTICS

Assemb 1 e 303A DSR

Assemble ER3314 DSR

Assemble 101HA LOAD vector module

==~=======================~=~==========================
PDOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-34

===

(8.4 GENERATING BOOT EPROHS continued)

.LINK
LINKER R2.4
*O,BOOT
*8, >FOOD
HAS >0000
*1,800T
*1,BT303
*1,8T3314
*6, >FFFC
HAS >FFOC
*1,BOOTE
*2
UNDEFINED DEF ENTRIES:
ISYS$ >0000 USER$ >0000 XOLT03 >0000 XDLT04 >0000
*3
MULTIPLY DEFINED OEF ENTRIES: NONE
*4,TEHP
il<f:j

START TAG = >0000
*7
.LOGO
LOGO R2.4
"'2,>FOOO
*1,BOOT
LOADING •••••
IDT='BOOT2.4 '
IOT='83032.4 '
!OT='B3142.4 '
lOT='BOOTEV '
ENTRY ADDRESS=>OOOO
*3,>FBOO,>FFFA,>F812
*4,>FSOO,>FFFF,BOOT
*6
.RC

Invoke the Linker

Note: didn't overrun EPROM

Exit LINK
Invoke the loader for checksumming

Note: lOT order

Set checksum in object

Exit LOGO
End of chain file

,...,

===
PODS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-35
==~==

(8.4 GENERATING BOOT EPROHS continued)

The link map generated above is listed beloH. Note that
the last DSR module, BT3314, is located up to address >FFDC,
indicating that only 30 bytes are available in the EPROHs.
Also, the only undefined external references are ISVS$ (the
optional system initialize routine), USER$ (the optional
auxiHary routine), and the tHO undefined DRS's, XDLT03 and

XDLT04 •

• SF TEMP

LINK HAP FILE
TIHE=11:49:45
DATE=09/17/82
FlLE=BOOT
FILE NAHE:EXT lOT ENTRY [--PSEG---] [--DSEG---]

1 BOOT 'BOOT2.4 >F800 >FOOD >FCD4 >0000 >0000
2 BT303 'B3032.4 >FCD4 >FCD4 >FE86 >0000 >0000
3 BT3314 'B3142.4 >FE86 >FE86 >FFDC >0000 >0000
4 BOOTE 'BOOTEV ' >FFFC >FFFC >0000 >0000 >0000

DEF FIT VALUE REFERENCES

BAUD 1 p >F89C #4 P >FFFE
BBTTO 1 p >FBOC
SOUTH 1 p >FB4A
BTGC 1 p >FBAA
BTGN 1 p >FB62
BTPH 1 p >FB3C
BTTO 1 p >FBBE
BUFF 1 A >7060
BHS 1 A >7000 #4 P >FFFC
D303C 1 A >2FBC #2 P >FE14 #2 P >FE22 #2 P >FE2A
DSFLG 1 A >2FOO #2 P >FD32 #2 P >F07B
ISYS$ u >0000 #1 P >FBFC
L3LOCK 1 A >2FEB #2 P >FD62 #3 P >FFBC
HAIN 1 p >FBFE
HOFLG 1 A >2FOB
PARHS 1 A >7024
SHLOCK 1 A >2FEA
TICS2 1 A >2FBB 112 P >FDFC #2 P >FE02
TIHE 1 A >2FEC #2 P >FE42 #2 P >FE70 #3 P >FFCC
TPS 1 A >0070 #2 P >FEOB
USER$ u >0000 111 P >FBFB
XDLT01 2 p >FCD4 #1 P >FBEB
XOLT02 3 p >FE86 #1 P >FBEA
XDLT03 u >0000 111 P >FBEC
XDLT04 u >0000 111 P >FBEE

DEF REF

20 6
1 12
1 2
0 2 I

#2 P >FE36 OOFLG 1 A >2FD4

===
PODS 2. 4 DOCUMENT A TlON CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-36
==~==

(8.4 GENERATING BOOT EPROMS continued)

Even though burning the tHo TMS 2708 EPROMs might be
accomplished in a chain file, do this interactively. Either
the BURNP or the BURN302 utility accepts the output from
LOGO for burning the EPROMs. BURNP is an RS232 type burn
program Hhere the object is passed to a standalone burner
over an RS232 serial link. The actual burning and
verification of the EPROMs are done external to POOS.
Therefore, He use the BURN302 utility for this example, so
that the loading, burning, and verification can be

demonstrated •

• BURN302
BURN302 R2.4
*NOTE: ALL NUMBERS ARE HEX.
*
HIGHEST PC=ODOO
BUFFER LIMITS ARE 0000 TO 7074
0, <file>, <adr>
1,<fi1e>{,<adr>}
2,<adr1>,<adr2>,<byte>
A

LOAD BINARY FILE
LOAD OBJECT FILE
LOAD EPROM DATA
VERIFY BLANK EPROM

B{,<adr>} SET BUFFER BASE
C,<adr1>,<adr2>,{<adr3>} COMPUTE CHECKSUM
E EXIT TO PODS
1{, <adr>}
M

<adr1>
<adr1>, <adr2>
<adr1>,<adr2>,<adr3>

O,<adr1>,<adr2>,<f;le>
P,<adr1>,<adr2>,<byte>
S{,<step>}

T {, <eprom>}
V,<adr1>,<adr2>,<byte>

*B,FOOO
HIGHEST PC=OOOO

SET EPROM INDEX
MODIFY BUFFER MEMORY
INSPECT
DISPLAY MEMORY
COPY MEHORY
OUTPUT OBJECT TO FILE
PROGRA~i EPROM
SET STEP
SPECIFY EPROM TYPE
VERIFY EPROM HITH MEMDRY

BUFFER LIMITS ARE FOOO TO FFFF
*1, TEMP
ENTRY ADDRESS=OOOO
*C,FBOO,FFFF
CHECKSUM=OOOO
*A

*P,FBOO,FFFF,L
.......... +
.......... +
.......... +
.......... +
•••••••••• +
•••••••••• +
•••••••••• +
•••••••••• +
•••••••••. +

VERIFYING
*VFBOO,FFFF,L
*A
*PFBOO,FFFF,R
•••••••••• +
.......... +
.......... +
.......... +
.......... +

.......... +

.......... +

.......... +

VERIFYING
*VFSOO,FFFF,R
*E

·-

===~=============
PODS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-37
===

8,5 DSR DEFINITIONS

The follDHing is a summary of all current Device Service
Routines in the PODS l;brary. The file names, addressing,
and format information is included in an abbreviated form.
Any current restrictions are also listed. Use this
information as a reference only. See the sources for
complete information. The definition of the headings
precedes the actual module information:

Name: BT<device>:SR
Device: Device name and description

Address: Memory mapped and CRU mapped addresses
Formats: Media formats supported, formatting utility name

Boot: Location and format of boot sectors
Boot Sectors: General boot sector number
Memory Usage: Registers and/or system memory locations needed

Size: Module size in decimal bytes [in hexadecimal]
Device DEF: Device number and DEF'd out label name

Restrictions: Other information about the DSR
Errors: Error numbers generated by the DSR and their meanings

8,5.1. BT2l.O:SR

Name: BT210:SR
Device: TH990/210-3 Bubble memory module

Address: Memory mapped at >E100, >E120, >E140, and >E160
Formats: N/A, no formatting necessary

Boot: N/A
Boot Sectors: All at sector 156
Memory Usage: Registers

Size: 272 bytes [>110]
Device DEF: 13=XDLT03

Restrictions: Bubble boards must be -3 boards (6 bubbles)
Errors: 101=Sector too large

102=Controller timeout

===
PDOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-38
===

(8.5 DSR DEFINITIONS continued)

8.5.2 BT232:SR

Name: BT232:SR
Device: RS232 communication link

Address: CRU base address at >0180 or >0040 (VG)
Formats: N/A, no formatting necessary

Boot: N/A
Boot Sectors: All at sector 1846
Memory Usage: Registers

Size: 326 bytes [>146]
Device DEF: #3=XDLT03

Restrictions: Slave system must be executing RSZ32 as a
background task. Communication is at 9600 baud.

Errors: 101=Invalid response
102=line timeout
103=No acknowledge

8,5,3 BT303:SR

Name: BT303:SR
Device: TH990/303A floppy controller

Address: CRU base address at >0200
DHA sector transfers.

Formats: Single and double sided, double density 8" floppy
Use the FRMT303 utility

Boot: Single sided, double density, tracks 72-75
Boot Sectors: All at sector 1846
Memor·y Usage: Registers

>ZFBC->ZFCF Command table
>2FD0->2FD3 Double sided flags (DSFLG)

Size: 434 bytes [>182] (102 CPU is larger)
Device OEF: #1=XDLT01

Restrictions: Uses high extended address lines
Errors: 102=Contro11er timeout

109=Happer boundary violation
110=Sides not disk compatible
others are RO and R1 words combined

~

==~===::===~=~====~==~=~

PODS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-<~9

::'===============:::=========:::=======c·.::::;::::";:::;:;,~:;::c:::c.,::::::::

(8.5 DSR DEFINITIONS continued)

8.5.4 BT3300:SR

Hallie: BT3300:SR
Device: ER3300A floppy controller

Address: Memory mapped at >EOOO->E01F
CRU mapped at >0400->047F

Formats: Single sided, single and double density 5" floppy
Use the FRHTg3 Utility

Boot: Single sided, single density, tracks 30-39
Boot Sectors: All at sector 300
Memory Usage: Registers

>2FD4->2FD7 Double density flags (DOFLG)
>2FDB->2FDB Motor off flags (HOFLG)

Size: 4gz bytes [>1EC]
Device DEF: 14=XDLT04

Restrictions: Don't HOrk PAUL.
Errors: 101=Sector too large

102=Not ready/controller timeout
103=Hrite protected
104=Hrite fault
105=RNF/Seek error
106=CRC wong

8.5.5 BT3314:SR

Name: BT3314:SR
Device: ER3314 SASI interface

Address: Memory mapped at >E020->E03F
CRU mapped at >04B0->04FE

Formats: Peripheral defined, use the FRHTH utility
Boot: N/A

Boot Sectors: 0 = 16288
1 = 16288
2 = 1846
3 = 3856

Memory Usage: Registers
Size: 342 bytes [>156]

Device DEF: 12=XDLT02
Restrictions: Must be assembled for enabled or disabled

interrupts during data transfers. Disk nut11bers
0 and 1 select logical device 0. Disk number 2
selects logical device 2 as a SABDD type device.
Disk number 3 selects logical device 3 as a
SAB50 type device.

Errors: 102=Controller timeout
200+SASI Error code

===
PODS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-40
==~==

(8.5 DSR DEFINITIONS continued)

8.5.6 BT95VG:SR

Name: BT95VG:SR
Device: THS9909 based HOED 1095 single board computer

Video Games TMS9995 based SBC
Address: Memory mapped at >F860->F89F

CRU mapped at >0140->015E
Formats: Single and double sided, single density 5" floppy

Use the FRHTVG utility
Boot: Single sided, single density, tracks 30-39

Boot Sectors: All at sector 300
Memory Usage: Registers

>2FD0->2F03 Double sided flags (DSFLG)
>ZF08->2FOB Motor off flags (MOFLG)

Size: 414 bytes [>19E]
Device DEF: #1=XDLT01

Restrictions: 9909 has problems
Errors: 300-303=0rive not ready after 1.25 (RESTORE)

304-311=Reca1ibrate drive errors
312-315=TRK 00 .NE. PTRACK (0-3)
316-319=Drive not ready after 1.26 (FORMAT)
320-323=Rates not defined

329=Hrite protect on FORMAT
332-335=Drive not ready after 1.26 (READ)
336-339=Rated not defined

340=Hard sector not found
341=10 sync bytes not found
342=10 addre3s mnr·k not found
343=10 CR: error
344:::10 bytes not found
345=Data sync or AM not found
346=0ata o/f1or~ error
347=Dat~: CRC error

348-351=Drive not ready after 1.25 (HRITE)
352-355=Rates not defined

356=Hard sector not found
357=10 sync bytes not found
35B=ID address mark not found
359=10 CRC error
360=10 bytes not found
361=Diskette srite protected
362=Data u/f1o~l error
363=0ata u/floH error (FORMAT TRACK)

~
I

. ·. :;:===================·===:::==================================
PDOS 2.4 DOCUMENTATlON CHAPTER 8 · DISK DEVICE SERVICE ROUTINES PAGE 8-41
==================~====================·===

(8.5 DSR DEFlN!TlONS continued)

8.5.7 BTFDCl:SR

Name: BTFDC1:SR
Device: G H Three FOC-1 STD floppy controller

Address: l/0 mapped at >EFCO->EFCF
Formats: Single and Double sided, Single and Double density,

5" or S" floppies
Use the FRMTFOC1 utility

Boot: Single sided, single density 5"
Single sided, double density 8"

Boot Sectors: All at sector 300 for 5"
All at sector 1846 for B"

Memory Usage: Registers
>2FD0->2F03 Double sided flags (DSFLG)
>2FD4->2FD7 Double density flags (OOFLG)
>ZFDS->2FDB Motor off flags (HOFLG)
>FOZO->F029 On chip RAM stuff

Size: 678 bytes [>2A6]
Device DEF: #1=XDlT01

Restrictions: Mixing 5" I 8" drives not supported, though
possible

Errors: 101=Sector # too large
102=Not ready
103=Hrite protected
104=Hrite fault
105=RNF/Seek error
106=CRC Hrong
107=Lost data
199=Contro11er timeout

==~==============================
POOS 2.4 DOCUMENTATION CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE B-42
===

(8.5 DSR DEFINITIONS continued)

8.5.8 B'l'WINC:SR

Name: BTH!NC:SR
Device: Hicro/Sys host adaptor for STD bus

Address: I/0 mapped at >EF90->EF93
Formats: Peripheral defined, use the FRMTHS utility

Boot: N/A
Boot Sectors: 0 = 16288

1 = 16288
2 = 1846
3 = 3856

Memory Usage: Registers
Size: 340 bytes [>16A]

Device OEF: 12=XDLT02
Restrictions: Non-DHA device. Non-14030 (266 us) support. Disk numbers

0 and 1 select logical device 0. Disk number 2
selects logical device 2 as a SA800 type device.
Disk number 3 selects logical device 3 as a
SA850 type device.

Errors: 1DZ=Controller timeout
ZOO+SASl Error code

=··==·==··==============3===~==
. PDOS 2. 4 DOCUMENT A T!ON CHAPTER 8 DISK DEVICE SERVICE ROUTINES PAGE 8-43
==============·========::.:::::::::::::·===-===============~===

8 • 6 AN EXAMPLE

The follOHing listing is a skeleton of a generalized Device
Service Routine. To create a neH OSR, use this frsmeHOrk
and add the actual code needed by the device. You cannot
use error numbers 0 through gg, These are reserved for POOS
and BASIC.

* BT<neme>:SR <date>

*
"'
*
*
*

<device definition and summary>

XDLT<i> Hhere <#> = 01, 02, 03, 04

*
*
*
*
*

***********"'"'*****************************"'******

*
TITL ' <OSR title>
lOT '<DSR idt>'

*

* LINKAGE TO BOOT:SR

*
OEF XDLT<It> ;DEVICE LINK T.I\BLE

*
REF TlHE ;TASK TIMER
REF DSFLG ;DOUBLE SlOEO FLAG
REF OOFLG ;DOUBLE DENSITY FLAG
REF L3LOCK ;lEVEL 3 LOCK

*
COPY BTFLG:SR ;GET FLAGS

*

* <device> CONTROLLER CONFlGURAHON

"'
BPS EQU 256 ;256 BYTES/SECTOR

<device parameters and equates>
<e.g. CRU bases, step rates, biases>

===~===
PODS 2.4 DOCUMENTATION CHAPTER S DISK DEVICE SERVICE ROUTINES PAGE 8-44

===

(AN EXAMPLE continued)

* LINKAGE TABLE

*

RORG 0
XOLT<#> JHP XINIT

JHP XREAD
JHP XHRIT
JHP XDOFF

*

DATA <boot sector #0>

DATA <boot sector #1>
DATA <boot sector #2>
DATA <boot sector #3>
IFN FLGSH,XDLTE
TEXT '<device name>'
BYTE D

XDLTE EVEN
*

;INITIALIZE DRIVE ENTRY
;READ SECTOR ENTRY
;HRITE SECTOR ENTRY
;DISK OFF ENTRY
;DISK #0 BOOT SECTOR
;DISK 111 II

;DISK #2 "
;D!SK #3 II

;DRIVE NAME

* <device> INITIALIZATION ENTRY

*
XlNlT HOV R11,R13 ;SAVE RETURN

<Can use ell registers except R14 & R16>

8 *R13 ;RETURN
*

* <device> DISK OFF ENTRY

*
XDOFF EQU $;DISK OFF

<Use only registers RO-R2, and R12>

B *R11 ;RETURN
*

* <device> READ SECTOR ENTRY

*
XREAD ECU $;READ SECTOR

<get read parameters>

JHP XCRH ;GOTO COMMON R/H ROUTINE

==============================•======~======;=~==~=========~===
PODS 2.4 DOCUMENTATION CHAPTER 8 ··• p1SK .DI;V.ICE SERVICE ROUTINES PAGE 8-45
==:;===========:::============·=:;:==

(AN EXAMPLE continued)

* <device> HRITE SECTOR ENTRY

*
XHRIT EQU $;HRITE SECTOR

<get Hrite parameters>

*
* COMMON R/H ROUTINE

*
XCRH MDV *R13,RO

AND! RO, >0003
MDV iil2(13),R1
Cl R1,<size>

JH ER101
HOV iil4(13),RZ

;GET DISK #
;MOD(UNlT,4)
;GET SECTOR NUMBER
;SECTOR OK?
;N, ERROR
;Y, GET BUFFER ADDRESS

<read/Hrite routines>
<RO = disk #>

<R1 = sector #>

<RZ = buffer address>

* OPERATION SUCCESSFUL EXIT

*
XRHDK INCT R14 ;SUCCESSFUL OPERATION

*

* COMMON RETURN

*
XRHRT CLR iill3LOCK

RTHP

*
ER101 Ll RD,101

;CLEAR LOCK FLAG

;SECTO~ TOO LARGE

*

* ERROR PROCESSING

*
ERROR HOV RO,*R13

JHP XRHRT
END XOLT<#>

;RETURN ERROR II

===========·================~====--=-=~~==
PODS 2.4 DOCUMENTATION CHAP'i$ 9 DISf(DEVICE SERVICE ROUTlNES PAGE 8-46
=========~================================~===========-===-============~==========z=====================================

