
===
PDOS Z. 4 DOCtJiiiENT ATlON CHAPTER 3 PDOS PAGE 3-1
===

CiAPTER 3

PDOS

The PODS operating syst8111 1s described here in detai 1.
There are four .. in sections of PODS; naaely, the kernel,
the ftle lllllnllgU8nt 110dule, the COIIIIIIInd 1 ine interpreter or
~~onttor, and the floating point package.

3.1 PDOS KERNEL •• 3-2

3.1.1 PDOS TASK ••••••••••••••••••••••••••••.•••.• 3-2
3.1.2 HULTI-TASKING ••••••••••••••••••••••••••.••• 3-4
3.1.3 SYSTEM SERVICES •••••••••••••••••••••••••••• 3-7
3.1.4 PDOS CHARACTER I/0 •••••••••••••••••••••••.. 3-B
3.1.6 EVENTS ••••••••••••••••••••••••.•..••.••.•. 3-12
3.1.6 TASK COHHUNICATION •••••••..•.....•••.••••. 3-14
3.1.7 TASK SUSPENSION ••••••••••••••••••••••••.•. 3-16
3.1.8 HULT1-PAGING •••••••••••••••••.••••••.••••• 3-16
3.1.9 lNTERRlPTS •..•••••••.••••.•••••••...••.••. 3-17

3.2 PDOS FILE HANAGEHENT •..••.•••.••.••.•••..••••••••••. 3-18

3.2.1 PODS FILE STORAGE 3-18
3.2.2 FILE NAHES •••••••••••••••••••••••••••••••• 3-20
3.2.3 DIRECTORY LEVELS •••••••••••••••••.••••••.• 3-21
3.2.4 DISK NUHBERS •••••••••••••••••.•••••••...•. 3-21
3.2.6 FILE ATTRIBUTES •••••••••••••••••.••••••.•. 3-22
3.2.6 TIHE STAHPING •••••••••••••••••••.••••••••• 3-24
3.2.7 PORTS, UNITS, AND DISKS •••••••••.••••••.•• 3-24

3.3 PDOS MONITOR .. 3-25

3.4 FLOATING POINT MODULE •••••••••••••••••••.••••••••••• 3-26

===
PODS 2.4 DOCUMENTATION CHAPTER 3 POOS PAGE 3-2
===

3 .1 PDOS KERNEL

The PDOS kernel is the multi-tasking, real-time nucleus of
the PDOS operating system. Tasks are the components
comprising a real-time application. It is the main
responsibility of the kernel to see that each task is
provided Hith the support it requires in order to perform
its designated f&n:t1on.

The main responsibilities of the PODS kernel are the
allocation of memory and the scheduling of tasks. Each task
must share the system processor Hi th other tasks. The
eperating system saves the task's context Hhen it is not
executing and restores it again Hhen it is scheduled. Other
responsibilities of the POOS kernel are maintenance of a 24
hour system clock, task suspension and rescheduling, event
processing (including hardHare interrupts), character
buffering, and other support utilities.

3.1.1 PDOS TASK

A PODS task is defined as a program entity Hhich can
execute independently of any other program if desired. It
is the most basic unit of softHare Hithin an operating
system. A user task consists of an entry in the execution
task list, a Horkspace, a task control block, and a user
program space.

The task list is used by the PODS kernel to schedule tasks.
A task list entry is 20 bytes long and consists of a
page/count, task number, task control block pointer,
Horkspace pointer, program counter. status register,
floating point accumulator, and error return. (A 102 system
also includes 24 bytes of mapping information.)

The user Horkspace is the first 32 bytes of the task
memory. All registers are available for use by a task if
desired.

Immediately follOHing the Horkspace is the task control
block. This block of memory consists of three buffers,
three additional Horkspaces, and parameters peculiar to the
task. Register R9 of the user Horkspace points to the
status block Hhen the user program space is entered. The
task parameters may be referenced by a user program but care
must be taken that POOS is not crashed! The task control
block variables are displacements beyond register R9 and are
defined in FIGURE 3.1.

PDOS kerne 1 :

1. Multi-tasking, multi-user scheduling
2. System clock
3. Memory allocation
4. Task synchronization
5. Task suspension
6. Event processing
7. Character I/0 including buffering
9. Support primitives

Memory
Task List

Task 10
Task 10--->--->--->--->.-----------.
Task 11-->. I Horkspace I
Task 12 v (R9)=>1-----------I

v Task
v I Control
v I Block
v i>200(9)=:-----------:
v User
v Program
v Space
v
v i>1DC(9)=>J-----------l
v
v
v
v Task 11
·--->--->--->.-----------.

I Horkspace I
:-----------:

===--=====================
PODS 2.4 OOCUHENTATlON CHAPTER 3 PDOS PAGE 3-3
===

(3.1.1 PODS TASK continued)

The user program space begins immediately folloHing the
task control block. Relocatable 9900 object programs or
BASIC tokens are loaded into this area for execution. Task
memory is allocated in either 1k' or 4k byte increments
depending upon the type of system. The total task overhead
is >220 or 542 bytes. This leaves >1EO or 480 bytes
available for a user program in a minimal 1k byte task.

From the time a task is coded by a programmer until the
task is destroyed, it is in one of four task states. Tasks
move among these states as they are created, begin
execution, ere interrupted, Hait for events, and finally
complete their functions. These states are defined as
folloHs:

1. Undefined A task is in this state before it is
loaded into the task list. lt can be a
block of code in a disk file or stored
in memory.

2. Ready

3. Running

Hhen a task is loaded in memory and
entered in the task list but not
executing or suspended, it is said to be
ready.

A task is executed Hhen scheduled by
the PODS kernel from the task list.

4. Suspended Hhen a task is stopped pending an event
external to the task, it is said to be
suspended. A suspended task moves to
the ready or running state Hhen the
event occurs.

A task remains undefined until it is made knoHn to the
operating system by making an entry in the task list. Once
entered, a task immediately moves to the ready state Hhich
indicates that it is ready for execution. Hhen the task is
selected for execution by the scheduler, it moves to the run
state. lt remains in the run state until the scheduler
selects another task or the task requires external
information and suspends itself until the information is
available. The suspended state greatly enhances overall
system performance.

Task overhead = 542 bytes

4 task states:

1. Undefined
2. Ready

3. Running
4. Suspended

·-·
!Undefined! ->- IReadyl <--<--<--<--<-
---------· -<- ·-v-A-•

I I
I I

I I
._v_ .. _. ·-- --·
I Running I -->- I Suspended I

==============------------- - ================-=--========================--==========
PDOS 2. 4 OOCtltENTATlON . CHAPTER 3 PDOS PAGE 3-4
===========================--======================-==

3.1.2 MULTI-TASKING

Up to sixteen indepeudent tasks can reside in 11181110r'Y and
share CPU cycles. Each task contains its OHn task control
block and thus executes independently of any other task. A
task control block consists of a uin HOr'kspace, buffers,
and a PODS scratch area.

Four par81118ters are required for any new task generation.
These are:

1) A time interval indicating hoH long the
task executes before being SH&PPed to
the next task by the system clock -
defined in clock tics.

2) The task IIEIIIOI"Y requirement in 1k byte
incret!l8fltS.

3) An ir.,ut/output port for task console
COIIIU'Iication.

4) A task COIIIIIIand.

Each of the above requirements defaults to a system
parameter. For instance, default time slice is three tics
(3 x 8 milliseconds = 24 milliseconds). Default llleiiiOI"Y
allocation is 1k bytes and default console port is the
phantom port.

lf a task COIIIIIand is not specified, the neH task reverts to
the PODS ~~onitor. HoHever, if no input is possible (ie.
port 0 or input already assigned), then the neH task
immediately kills itself. This is very useful since tasks
automatically kill themselves as they complete their
assignments (remove themselves fr011 the task list and return
memory to the available tnetiiOr'Y pool).

. .
A task entry in the task list queue is 20 to 44 bytes long
and consists of a task number desiption, parent task
number, ti11e interval, 111811101"Y page riUIIIber, task control
block pointer, program counter, Horkspace pointer, status
register, floating point ~CCU~~Ulator, error register, and 12
upping registers (PDOS 102). SHapping from one task to the
next is done Hhen the task interval timer decrements to zero
or during an l/0 call to PODS. The task interval timer
decrements by one every eight milliseconds.

16 independent h111e shared tasks

1 t1c = 1/125 second

Task defaults

Automahc task termination

Task entry in task list

===
PDOS 2.4 ~ATION CHAPTER 3 PDOS PAGE 3-5
===----========================----==--=======================

(3.1.2 HULTI-TASK!NG continued)

Any task may sp&Hn another task. Memory for the neH task
is allocated in 1k byte blocks from a pool of available
11181101"y. If no memory is free, the sp&Hning task's oHn
1118110ry is used and the parent task's memory is reduced in
size by the amount of memory allocated to the neH task.

PODS maintains a memory bit map to indicate Hhich segments
of memory are c:urTently in use. Allocation and dea11ocation
are in 1k byte increments. Hhen a task is terminated, the
task's memory is automatically deallocated in the memory bit
map and made ave;table for use by other tasks. Furthermore,
Hhen PODS prompts for a neH commend, the memory bit map is
checked for any available memory adjacent to the upper hmit
of the task. If more memory is available, it is allocated
to the task and the upper limit of the task is extended.
Thus, memory is automatically recovered by the parent task.

"Multi-user" refers to spaHning neH tasks for additional
operators. Each neH task executes programs or even spaHns
additional tasks. Such tasks are generated or terminated as
needed. Task D is referred to as the system task and cannot
be terminated.

Task memory allocation

Memory bit map

Memory automatically recovered

Multi-user system

=====-~=- ------===
PDOS 2.4 ootuMENTATlON CHAPTER 3 PDOS PAGE 3-6

=========--=======-===============------===- --=--- ==============================

TASK >
---1

RO I Main Horkspace
R1 I
R2 I
R3 I
R4 I
R5 I
R6 I
R7 I Task Status Control Definitions
R8 I
R9 !>>>>>>>>>>> *R9 = 256 byte user buffer
R10 1 i>100(9) = Q.B - 82 byte monitor collllll8nd line buffer
R11 1 i>152(9) = HHB - 32 byte monitor Hork buffer
R12 i>172(9) = CLP - monitor buffer pointer
R13
R14
R15

1---1
I

I\
----· \
Task Control\

Block I

---.1
II

i>174(9) = CHP - monitor command pointer
i>176(9) = CHD- command buffer delimiter
i>178(9) = HHP - monitor Hark buffer pointer
i>17A(9) = L1H- level 1 HOrkspace
i>186(9) = UNT - output unit #

i>188(9) = PRT - input port #

i>1BA(9) = lHP - assigned input message pointer
i>18E(9) = CNT - output column counter
i>19A(9) = L2H - level 2 HOrkspace
i>1BA(9) = L3H - level 3 Horkspace
i>1DA(9) = SOL - system disk # I directory level
i>1DC(9) = EUH - end of user memory pointer
i>1DE(9) = HHF - memory modified flag
i>1E0(9) = ACl - assigned input FILE IO
i>1E2(9) = SPU - output SPOOL unit #
i>1E4(9) = SFI - output SPOOL FILE 10
i>1E6(9) = CU1 - unit 1 CRU base
i>1E8(9) = CU2 - unit 2 CRU base
i>1EA(9) = CSC - ·clear screen character(s)
i>1EC(9) = PCC - position cursor characters
i>1EE(9) = - 6 monitor TEMP Herds
i>1FA(9) = - $TTA column counter
i>1FC(9) = - Reserved
i>1FE(9) = - Reserved

<<<<< USER PROGRAH

FIGURE 3 .l '!'ASIC CONTROL BLOCK

---------- -

~·
\.

~ r
\

===~===-----===============
PDOS 2. 4 DOCUMENT AT ION , . : (:HAPTER 3 POOS PAGE 3-7

=--=----==================================--============================--====--==

3.~.3 SYSTEM SERVICES

System services are those functions that a task requires of
the operating system Hhile entered in the task list. These
requirements range frOID timing and interrupt handling to
task coordination and resource allocation.

ln addition to a variety of system tables, POOS provides
several time keeping capabilities. These include the
current time of day and date. Also, a 32 bit counter can be
used for various delta time functions.

HardHare interrupts are processed by the kernel or passed
to user tasks. Tasks can be suspended pending the
occurrence of an interrupt and then be rescheduled Hhen the
interrupt occurs. Interrupts such as the interval timer and
character input or output are handled by the kernel itself.

Task coordination is an integral part of real-time
applications since many functions are too large or complex
for any single task. The POOS kernel uses common or shared
data areas, called mailboxes, along Hith a table of
preassigned bit variables, called events, to synchronize
tasks. A task can place a message in a mailbox and suspend
itself on an event HBiting for a reply. The destination
task is signaled by the event, looks in the mailbox,
responds through the mailbox, and resets the event signaling
the reply.

System resources include the processor itself, system
memory, and support peripherals. The POOS kernel provides
primitives to create and delete tasks from the task list.
Memory is allocated and deallocated as required.
Peripherals are generally a function of the file manager but
are assigned and released via system events. Device drivers
coordinate related l/0 functions, interrupts, and error
conditions. All of these functions are available to user
tasks and thus tasks may spaHn tasks and dynamically control
their operating environment.

Other support utilities contained Hithin the PDOS kernel
include number conversion, command 1 ine decoding, date and
time conversions, and message processing routines.
Facilities ere also provided for locking a task during
critical code execution.

System services

Time keeping facilities

Interrupts

Task coordination

System resources

Support utilities

==---===--=-==== ==========-----=====================-=========---==---- --- =-------=---===
PDOS 2. 4 DOCUHENTATION CHAPTER a POOl PAGE 3-8
==--===== -- -===:===- ----===-===-----=-============ =====-=-·= == ====================--=========--=======

3 .1. 4 PDOS CHARACTER. I/0

The flDH of character data through PDOS is the IIIOSt visible
function of the operating system. ~ter buffering or
type-ahead aares the user that each keyboard entry is
logged, even Nhen the application is not looking for
characters. Character output is normally ttrough progr-8111
control (polled l/0). HoHever, an interrupt driven output
pr1a1tive allONS 1118X1.., data transfer even though the task
itself may be in a ready or suspended state.

Inputs are through logical port numbers, Hhereas outputs
are to physical CRU based UARTs (Universal Asynchronous

Receiver/Trens~~itters). A logical input port is bound to a
physical UART by the baud port COIIIIII8rlds and is uniquely
assigned to a task. Many tasks may share the same output
UART but IIUSt coordinate all outputs themselves.

PDOS CHARACTER .INPUT

PDOS character inputs come from four Sources: 1) user
~~e~~~ory; 2) a PDOS file; 3) a polled l/0 driver; or 4) a
systeat input port buffer. The source is dictated by input
variables Hithin the task control block. Input variables
are the Input Message Pointer (1HP(9)), Assigned Console
Input (ACl(9)), and input port number (PRT(9)).

Hhen a request is made by a task for a character and lHP(9)
is nonzero, then a character is retrieved from the memory
location pointed to by IHP(9). IHP(9) is incremented after
each character. This continues until a null byte is
encountered, at Hhich time IHP(9) is set to zero.

1f 1HP(9) is zero and ACl(9) is nonzero, then 8 request is
made to the file lll8n8gel" to read one character from the file
assigned to ACl(9). The character then comes from 8 disk ·
file or an l/0 device driver. This continues until an error
occurs (such as an END-oF-FILE) at Hhich time the file is
closed and ACl(9) is cleared.

If both 1HP(9) and ACl(9) are zero, then the logical input
port buffer selected by PRT(9), is checked for a character.
lf tha buffer is empty, then the task is aut01118tica11y .
suspended until 8 character interrupt OCCW""S.

PODS character input flOH is summarized by Figlre 3.2.

Interrupt driver character type-ahead

Progr-11111 contro 1 output

Inputs through logical ports

· Outputs through physical CRU bases

Character inputs:

1. User memory
2. PODS disk file
3. PODS 1/0 device driver
4. System input port buffer

1HP EQU >18A ;INPUT MESSAGE PO!HTER
U R1,CHHD ;POINT TO COHHAND
HOV R1,cUHP(9) ;SET INPUT P01NTER

CHHO TEXT 'MESSAGE'
BYTE 0

ACl EQU >1EO
LI R1,FILEN
XSOP

XERR
HOV R1,aACI(9)

;ASSIGNED CONSOLE 1NPUT
;POINT TO FlLE NAME
;OPEN FILE

;SET CONSOLE INPUTS

FlLEN TEXT '1NDATA'
BYTE 0

PRT EQU > 188 ; INPUT PORT NUHBER
LI R1,3 ;READ CHARACTERS FROH
HOV R1,iPRT(9) ; PORT 13

~
!

,,...,
'

"""' \

r

,,,., ', - • .. ·==· --==--==---' '---==============
PDOS 2. 4 DOCUHENTATION WTER 3 POOS PAGE 3-9

======= .. =-==================--===--=========-===·======--===---- --====--==--=========

1. HEHDRY MESSAGE TASK CONTROL BLOCK

I
HS6 TEXT 'HELLO' >>>>>>>>>>>>>>>> I(HSP)I 1HP(9)

BYTEO I I \

2. PODS FlLE N/TYPE=AC

DO:AC »> [CHANNEL BUFFER]
v

\

\
\
\
\

\

v I I \
+>>>>>>>>>> IFlllDI AC1(9) >>>+>>>"INPUT

I
3. PDOS 1/0 DRIVER ,.

A

$TTl >>>> [POLLED l/0 DRIVER]

4. SYSTEM INPUT PORT BUFFER

ICEYEIOARD INPUT PORT
v CAUTB BUFFERS
v . --· ·--·
v I >080 I IBUF 111

9902 UART >> I >180 I >> IBUF 121 >> !
>EOO I IBUF #31
>AOO I IBUF 141
>A40 I IBUF 151
>ABO I IBUF 161
>ACO I lBUF 171
>BOO I lBUF #BI

2

I

I I
II

I

I

I
I

I PRT(9)

I

I
I

NOTES: 1) CAUTB binds a physical 9902 UART to a logical
port number.

I

2) 9902 UART baud rates and CRUTB entries are defined
by the 'BP' and 'BAUD' commands (XBCP primitive).

3) XGCC gets characters frotn input port buffers only.

FIGURE 3. 2 PDOS CHARACTER INPUTS

=====---===========-=======-~-==---===--,;.= ee ======-======e~.....-- zm - ======--===================
PDOS 2. 4 DOCUHENTATlON OIAPTER 31111$ PAGE 3-10
=== -----=-: - _ --==---=-=--===-==-====:::-:::::::= =-==== ====:=:~~~,t~GII!IMII'!ltlt•ftll.tl!l-======-== ===========================

(3.1.4 PODS CHARACTER l/0 continued)

POOS OIARACTER OUTPUTS

PDOS character outputs ere directed to various destinations
according to output variables in the task control block.
OUtput variables ere the output unit (UNT(9)), spooling unit
(SPU(9)), spooling file lD (SF1(9)), unit 1 CRU base
(U1C(9)), and U'\ft 2 CRU base (U2C(9)). The output unit
selects the different destinations. (This is NOT to be
confused Hith disk unit numbers.)

Hhen an output primitive fa called, the task output \l'lft is
ANDed Hith the task spooling output unit. lf the result is
nonzero, then the character is directed to the fila manager
and Hri tten to the file specified by SF1(9). The output
unit is then masked Hith the complement of the spooling unit
and passed to the unit 1 and unit 2 processors.

Units 1 and 2 ere special output numbers. Unit 1 is the
console output port assigned Hhen the task Has created.
Unit 2 is an optional output port that is assigned by the
user task in addition to unit 1. Unit 2 is set by the baud
port commands.

lf the 1 bit (LSB) is set in the masked output unit, than
the character is directed to a 9902 UART Hi th CAU base
U1C(9). LikeHise, if the 2 bit is set in the masked output
unit, then the character is output to the U2C(9) CRU based
9902 UART.

liNT
SPU
SF!
U2C
U2C

•

*
LOOP

EQU >186
EQU >1E2
EQU >1E4
EQU >1E6
EQU >1E8

Ll R1,FILEN
XSOP

XERR
HOV R1,iSFI(9)
CLR R2
HOV iC4,iSPU(9)

HOV R2,R1
HOV R1,iUNT(9)
XCSH

DATA MES01
XPLC
lNC R2
Cl R2,8

JLT LOOP

C4 DATA 4
fllLEN TEXT 'OFILE'

BYTE 0

;OUTPUT UNIT
;OUTPUT SPOOLING UNlT
;OUTPUT SPOOL FILE IO
; UNIT 1 CRU BASE
; UNIT 2 CRU BASE

;GET FlLE NAME
;OPEN FILE

;SET SPOOL FILE IO
; CLEAR COUNTER
; SET SPOOL UNIT TO 4

; SELECT UNIT
; CONVERT NUMBER

; OUTPUT MESSAGE
;INCREMENT R2
;8 TIMES?
;N
;Y

;OUTPUT FlLE NAME

MES01 TEXT 'OUTPUT MESSAGE I'
In SUIIIIII8ry, the bit positions of the output unit ere used BYTE 0
to direct output to various destinations. Hore than one
destination can be specified. BHs 1 and 2 are predefined
according to U1C(9) and U2C(9) variables Hithin the task
control block. Other unit bits are used for outputs to
files and device drivers. Thus, if SPU(9)=4 and UNT(9)=7,
then output MOUld be directed to the file manager via SF!(9)
and to tHO 9902 UARTS as specified by CRU bases in U1C(9)
and U2C(9). (See Figure 3.3.)

iSPU(9) = 0000 0000 0000 0100
iUNT(9) = 0000 0000 0000 0111

Ill

Ill
Ff le iSF1(9)_// I
9902 iUZC(9)_//
9902 iU1C(9)_/

UNIT 1 =

·UNIT 2 =

(FlLE =

OUTPUT MESSAGE #1
OUTPUT MESSAGE 13
OUTPUT MESSAGE 15
OUTPUT MESSAGE 17

OUTPUT MESSAGE 12
OUTPUT MESSAGE 13
OUTPUT MESSAGE 16
OUTPUT MESSAGE 17

OUTPUT MESSAGE #4•
OUTPUT MESSAGE 15
OUTPUT MESSAGE 16
OUTPUT MESSAGE 17

~
\

"""' \

("'

=------===· ==--=1=··============----~=====================--=====================================--=================
PDOS 2. 4 DOCUHENTATlON , . OiAPTER . 3 POOS

=--=====----====---- -========--====--=--===================,----

XPHC .<<<<<<<<<<<<<< I 7 I UNT(9)
XPLC v
XP8C v
v v .«<<<<<<<<< I 4. I SPU(9)
v v v I I
v 1. SPOOLing UNIT v v

0 v _v_v_ I I SF!(9) I

A v I ' I II I

T y))))))))))))))(IF (UNT"SPU))))))))>>ISF! I>>>>>>>> [PDOS F!LE]
A v _v_v_l I I or I

v v v I I [l/0 DRIVER] I I

F v . v_v_.
L v I unt=-SPUAUNT l
0 v . ---v---.
H v v

v Z. Output UNIT 1 v
v v __ v __ I I U1C(9) I

v v I ' I II I

v>>>>>>>>>>>>>>< lF (untA1) >>>>>>>>>1>0801>>>>>>>> [9902 UART]
v \ __ v __ l
v v
v 3. OUtput UNIT Z v
v _v __

v I
>>>>>>>>>>>>>>>< IF (untAZ)

'

Notes: UNlT 1 9902 = (-SPU A UNT) A 1
UNIT 2 9902 = (-SPU A UNT) A 1

PDOS FILE = (SPU A IJNT)

'
I

I I I

I l U2C(9) I

I II I

>>>>>>>>>1>1801>>>>>>>> [9902 UART]

FIGURE 3. 3 PDOS CHARACTER OUTPUTS

PAGE 3-11
:-- -----------============

======-=--=-=-===---------- •--=======••'1'1 ' I ====-===:::::::::::::::::::::::::=:=::;;;;:::

PDOS 2. 4 DOCUHENTATlON PAGE 3-12'

= ------- ---====·= == tlMl(JIII'lll=•====- -----=================================

3.1.5 EVENTS

Tasks COIIIIU1icate · by exchanging data through mailboxes.
Teaks synctronize Hith each other through events. Events
are single bit flags that are global to all tasks.

There are fcxr types of event flags in PDOS: hardHare,
softHBr8, softH8f"8 resetting, and syst• events. Systft
events are further divided into input, output, t1e1ng,
dl"iver, and syst1111 rescu'C8 events. Syste11 events re
predefined softH&re resetting events that are set d\ring
PDOS initialization.

1) 1-15

2) 16-63

3) 64-94

Events 1 through 16 are hardHare
events. They correspond to interrupt
levels 1 through 15 of the THS9900 CPU.
Hhen a task suspends itself pending a
hardHare event, the system THS9901 mask
is enabled allOHing the interrupt to
occur. Hhen the interrupt does occur,
the task 1i at is searched for the
suspended task. lf the current task has
not locked itself in the execution
state, then the neH task is 8H8kened,
SH8PPed in, and illllllediately begins
executing. OtherHise, the suspended
task is set in the reedy state end
executes Hhen scheduled. ln either
case, PODS disables the interrupt in the
system THS9901, thus alloHing the
8H8kened task to acknoHledge the
interrupt. Only one task responds to
any single hardHare event.

Events 16 through 63 are softHare
events. They are set and reset by tasks
and not changed by any PDOS system
function. A task can suspend itself
pending a softHare event and then be
rescheduled Hhen the event is set. One
task must take the responsibility of
resetting the event for the sequence to
occur again.

Events 64 through 94 are 1 ike the
nonaal softHare events except that PDOS
resets the event Hhenever a task
suspended on that event is rescheduled.
Thu. .. , one and only one task is
rescheduled Hhen the event occurs.

Events synchronize tasks

4 types of event flags:

1-16 = HardHare events
16-63= SoftHare
64-94 = SoftHare resetting

96-127 = System

' 1•16 = HardHare events

1&-63 = SoftHare events

84-94 = SoftHare resetting events

~- --====================--========---= - ---- -=============--=====================================
PDOS 2.4 DOCUHEHTAT!ON CHAPTER 3 PDOS PAGE 3-13

===== ---- - ---=============---=--===========--===----==--=====-----==========

(3.1.5 EVENTS continued)

4) 96-103

6) 104-111

6) 112-11&

7) 116-127

Events 95 through 103 correspond to
input ports 0 through 8. A task
suspends itself on an input event if a
request is made for a character and the
buffer is empty. Hhenever a character
comes into an interrupt driven input
port buffer, the corresponding event is
set.

Events 104 through 111 are used Hhen
doing interrupt driven character output
(XlPL) and signal that a null character
has been encountered and the output is
completed. Thus a task could send a
complete 1 ine to a tenoinal and either
continue executing or suspend itself
untn the line is printed.

Events 112 through 115 are timing
events and are set automatically by the
PODS clock module according to intervals
set by the BFIX utility. Event 112 is
measured in tics, Hhile events 113, 114,
and 116 are in seconds. The maximum
time interval for event 112 is 526
seconds or 8.7 minutes. Events 113,
114, and 115 have a maximum interval of
65536 seconds or approximately 18.2
hours. A task suspended on one of these
events is regularly scheduled on a tic
or second boundary.

Events 116 through 127 are for system
resource allocation. Drivers and other
utilities requiring OHOership of a
system resource synchronize on these
events. These events are initially set
by PODS, indicating the resource is
available. One and only one task at a
time is allDHed access to the resource.
Hhen the task is finished Hith the
resource, it must reset the event thus
allOHing other tasks to gain access.

95-103 = Input port events

104-111 = OUtput complete events

112 = 1/5 second event
113 = 1 second event
114 = 10 second event
115 = 20 second event

116 = $TTA active
117 = $LPT active

118-125 = To be assigned
126 = Error message disable
127 = System utility

==========·=========-·=--=========-==-=--==-==-=============--====- rn = -======--==========================~=======
PDOS 2. 4 DOCUHENTATlON CHAPTER 31QDS .PAGE 3-14

===================z====··=u=·================---======-===============-=la.=*gca:=======·==·•=-=--======

3.1.6 TASK COMMUNICATION

Hany different methods
COIIIIIIUni cation 1 n PDOS.

are available for intertask
Host involve a mailbox technique

Nhere semaphores are used to control message traffic.
Specially designed memory areas such as HAll, COM, and event
flags allON high level program communications. PDOS
Aintains eight message buffers for queued message
COIIIIIIUn1cattons betNeen task · console terminals. More
sophisticated 11ethods require program arbitrators and
message buffers as loaded by the ALOAD utility. A feN
~~ethods are defined belOH.

MAlL array

COH array

The HAll array is a permanent 60 byte
lleiiiOI"Y buffer ac:cess'!ble by assembly
1 anguage progr811S and PDOS BASIC as the
singly dimensioned array HAlL[O] through
HAlL[9]. The array is located at III8IIIOf'Y
addresses > 2Z04 through > 223F. This
array is never c 1 eared even during POOS
initialization. (See 10.69 HAlL.)

The COM array (COHmon array) is a
singly dimensioned array Hhich is used
by PDOS BASIC to preserve data during
RUN, NEH, and program chaining. In
addition,. COM is used to pass and return
parameters to assemb 1 y 1 enguage
subroutines. The COH array is defined
Hithin each task and is neither
permanent nor resident at a fixed memory
address. (See 10.13 COM.)

Absolute data movement

Absolute memory locations are
referenced by using the HEM functions.
The HEM function moves byte data; HEHH
moves HOrds; and HEMP moves 6 byte BASIC
variables. HEMP passes data betHeen
different memory pages or to a page
external to the current task (102
system). (See 10.61 HEM through 10.63
HEHP.)

Hai lbox COIIIIIIUnication

HAlL[O] - HAlL[9]

COM(O] - COH[9]

HEH[adr]=data
HEHH[adr]=data
HEHP[adr,page]=data

--==========================
~

;

~
I

.~
'

.~
\

=--=====c=====--- ----===--================
PODS 2.4 DOCUHENTAT!ON · · mfAPTER 3 PDOS PAGE 3-15

===== • =--====--=====--===========================--------============--==

(3.2.& TASK ODHHUNlCATION continued)

Event flags

Event flags are global system memory
bits, common to all tasks. They are
used in connection Hith task suspension
or other mailbox functions. Events 1
through 15 are defined as hardHare
events because they correspond to the 15

levels of interrupt of the THS9900.
Events 16 through 63 are for softHare
communication flags. Events 64 through
127 automatically reset Hhen a suspended
task is rescheduled. Events 96 through
103 are input events; 104 through 111
are output events; 111 through 115 are
timing events; and 116 through 1Z7 are
system events. (See 10.Z8 EVENT and
10.29 EVF.)

Message buffers

PODS maintains eight 50-byte message
buffers for intertask communication. A
message consists of up to 50 bytes plus
a destination task number. More than
one message may be sent to any task.
The messages are retrieved and displayed
on the console terminal Hhenever the
destination task issues a PDOS prompt or
by executing a Get Task Message
primitive (XGTH). The displayed message
indicates the source task number.

Memory Hai 1 box

The utilities ALOAD and FREE are used
to permanently allocate system memory
for non-tasking data or program storage.

Memory allocated in this HaY can be
used for mailbox buffers as Hell as
handshaking semaphores or assembly
programs. (See 13.1 ALOAD and 13.ZO
FREE.)

1Z7 Event flags

EVENT 30

IF EVF[30]

16 50-byte buffers

Memory Hai 1 box

====----===========================--===============--=--=======· ~====-----===
PDOS 2.4 DOCUHENTATlON CHAPTER I PDOI PAGE 3-16

=========================--======----==-=---===~--=-====================================--=--====

3.1.7 TASK SUSPENSION

Any task can be suspended pending a hardware or aof'bare
event. HrdNare events (1-15) c:ornspond to the THS9900
interTUpt levels. SoftHal"'e events (16-127) re system
III8IIIOt'Y bits global to all tasks. A suspended task does not
receive any CPU cycles unt11 the desir-ed event OCCU""S. A
task is suspended from BASIC by using the HAlT comm~, or
irom an assembly language program by the XSUl primitive. A
suspended task is indicated in the LIST TASK (LT) command by
a minus event nuMber being listed for the task time
parameter.

Hhen the event OCCU""S, the task is rescheduled and r.esumes
execution. If the event is a herdMar'e interrupt (events 1
through 15), then the task is immediately rescheduled,
overriding any currant task. If the event ts a softHre
event (16 through 127), then the 1ask begins execution
during the normal SNapping function of PODS. (See 5.2.16
XSUI - SUSPEND UNTIL INTERRUPT and 10.106 HAlT.)

3.1.8 MULTI-PAGING

Associated Hith each task is a 3 bit memory page number.

The page number is output on the CRU bus at the begiming of
each task time slice. This number is designed to select one
of eight 32K byte memory pages and deselect all others.
Thus, a system can handle up to eight memory planes or 256K
bytes of user task memory.

Each memory plane has its OHn select logic. The memory
addresses range from >6000 to >DFFF. The page select bits
are at CRU base address >0980.

lntertask communication betHeen different l8eiiiOt"y planes ·
IIUSt be through the COIIIIIIOI'I memory plane from >0000 to >6FFF.
The IMP utility installs a neH memory page by setting the
associated bits in the memory bit map. The HEMP function of
PODS BASIC is used to reference data in another page.

Task suspended pending event

.LT
TASK PAGE TIHE TB HS PC SR ...
*0/0 0 3 >42A2 >441C >0654 >040F •..
1/0 0 -30 >4AA2 >4A82 >1040 >ODOF •••
2/0 0 -5 >52A2 >5282 >292E >C40F •••

HardHare event response immediate

SoftHre event response slOHer

)0000 I ._, __ .
PODS I ._, __ .

>2000 I I I I
·-1--· I I I

I I ! I I I 71 1-1--· I I I

>4000 I I I I 61 •--· I I I

BASIC I I I I 51 1- I I I

>6000 I I 41 I I
I I I I

I I I I
I 31 I 1-1

>8000

>AOOO I Page 0
I
I

>COOO I

1

I I 21 1-1
I I I I
I I 1-1

I I I
I 1-1

I I
1-1

I
-I

>60DO

>EOOO

_I 8 x 32K = 256K bytes
>EOOO I __ _

>FFFF I __ _

=========·=r=· =======---================ z • =----== ---- --===
PDOS 2.4 DOCUENTATlON QWtTER 3 PDOS PAGE 3-17
=-=-==-==-=-==·=:·==-=====-=-====-====--------- =--==-==-==-======-==-=-==-==============:-===-===-=-=-=--=·=-=-·===-====-=-=====-======- ------

3 .1. 9 Ill'l'ERRDP'l'S

PDOS ~ts user interrupt routines for levels 1, Z, and
9 ttraugh 15. Level 3 is reserved for the systet1 clock.
Levels 4 ttraugh 8 re dedicated to user 9902 tenainal l/0.
Uninitializad THS9902 ports generate !lpU"iaua interrupts.
POllS sets the CPU's interrupt II8Sk to level 5 and enables
interrupts 3 ttrough 6 at the syst• 9901. This allONS the
syst• clack (level 3) 1 system console (level 4), and aux
port (level 6) to intemlpt.

Before setting a naH interrupt level Hith the .INTERRUPT
MASK ~ (lH) 1 caution should be taken to snare thet
all THS9902's in the syst• have been reset and defined Hith
the 8AIJ) PORT (SP) CCB!and. Othentise, the syst• hangs on
sp~riaua interrupts! The interrupt liUk .ust alHBys be
greater then level 3 for systet1 tasking and terminal access
to HOI"k.

lf a THS9902 is installed on level 7 or 81 the
c;Qit espouding II8Sk bit IIUSt be enabled in the syst• 9901.
This ll88k is located at 11181101'"Y location >0094 (>0084 for
102) and is changed by the BFix utility.

Levels 1-2 = High priority user interrupts
Level 3 = Syst• clock
Levels 4-8 z 9902 console terminal l/0
Levels 9-15 = User interrupt routines

========== ------- -------- • ·-===--===========~===
PDOS 2.4 DOCUHENTAT!ON CHAPTER 3 MS. PAGE 3-18
=======--================----=---======-- ...;.:::=--•••'' ll!llillll====---======================================

3. 2 PDOS PILE MANAGEMENT

The PDOS file 1181'18g8111ent module supports sequential,
nmdom, read only, and shred access to nailed fi lea on a
secondary storage device. These 1GN overhead file
primitives use a linked, randoal access file struct\.1"8 and a
logical sector bit II8P for allocation of secondary storage.
No file compaction is ever required. Files are time stamped
Hith .date of creation and last update. Up to 32 files can
be simultaneously opened. Complete device independence is
achieved through read and Hrite logical sector primitives.

3 • 2 .1 PDOS PILE STORAGE

A fi 1e ;s a named string of characters on a secondary
storage device. A group of file names is associated
together in a file directory. File directories are
referenced by a disk number. This number is logically
associated Hith a physical secondary storage device by the
read/Nrite sector primitives. All data transfers to and
from a disk number are blocked into 266 byte records called
sectors.

A file directory entry contains the file name, directory
level, the number of sectors allocated, the number of bytes
used, a start sector number and dates of creation and last
update. A file is opened for sequential, random, shared
random, or read only accass. A '$' preceding a file name
designates the file to be a syste111 1/0 driver. A driver
consists of up to 262 bytes of position independent binary
code. 1t is loaded into the channel buffer Hhenever opened.
The buffer then becomes an assembly program that is
executed Hhen referenced by 1/0 calls.

A sector bit map is maintained an each disk number.

Associated Hith each sector on the disk is a bit Hhich
indicates if the sector is allocated or free. Using this
bit map, the file manager allocates (sets to 1) and
deallocates (sets to 0) sectors Hhen creating, expanding,
and deleting files. Bed sectors are permanently allocated.
Hhen a file is first defined, one sector is initially
allocated to that file and hence, the minimum file size is
one sector.

File management module

Sequential, random, read only,

and shared f i 1 e access

File, file directory

Disk number

266 byte blocked data transfers

File directory entry

Sector bit map

==================================:==
PODS 2.4 DOCUMENTATION CHAPTER 3 PODS PAGE 3-19

===

(3.2.1 PDOS FILE STORAGE continued)

A PDOS file is accessed through an l/0 channel called a
file slot. Each file slot consists of a 32 byte status area
and an associated 256 byte sector buffer. Data movement is
alHays to and from the sector buffer according to a file
pointer maintained in the status area. Any reference to
data outside the sector buffer requires the buffer to be
Hritten to the disk (if it Has altered) and the neH sector
to be read into the buffer. The file manager maintains in
the file slot status area current file information such as
the file pointer, current sector in memory, END-OF-FILE
sector number, buffer in memory flag, and other critical
disk parameters required for program-file interaction.

Up to 32 files may be open at a time. Keeping all sector
buffers resident Hould require prohibitive amounts of system
memory. Therefore, only four sector buffers are actually
memory resident at a time. The file manager allocates these
buffers to the most recently accessed file slots. Every
time a file slot accesses data Hithin its sector buffer,
PODS checks to see if the sector is currently in memory. If
it is, the file slot number is bubbled to the top of the
most recently accessed queue. If the buffer has been

~ previously rolled out to disk, then the most recently
lr \ accessed queue is rolled doHn and the neH file slot number

is placed on top. The file slot number rolled out the
bottom references the fourth last accessed buffer Hhich is
then Hritten out to the disk. The resulting free buffer is
then allocated to the calling file slot and the former data
restored.

Files requiring frequent access generally have faster
access times than those files Hhich are seldom accessed.
HoHever, all file slots have regular access to buffer data.

PDOS allocates disk storage to files in sector increments.
All sectors are both forHard and' backHard linked. This
facilitates the allocation and deallocation of sectors as
well as random or sequential movement through the file.

PDOS files are accessed in either sequential or random
access mode. Essentially, the only difference betHeen the
tHo modes is hOH the END-OF-FILE pointers are handled Hhen
the file is closed. If a file has been altered, sequential
mode updates the EOF pointer in the disk file directory
according to the current file byte pointer, Hhereas the
random mode only updates the EOF pointer if the file has
been extended.

PDOS file slots

Sector buffer and status area

32 simultaneously OPENed files

4 active buffers

Host-recently-accessed resident
buffer allocation

Frequent access = fast access

ForHard and backHard linked sector
file storage

Sequential or random access

-------===-=========:--=-----=========-==========----================--====================
PDOS 2. 4 OOCUHENTATlON CHAPTER 3 PDOS

(3.2.1 PD05 FILE STORAGE continued)

THO additional variations of the randoiJI access IIICide allOH
for shared file and read only file access. A file Hhich has

been opened for 8hered access can be referenced by tHO or
11101'8 different tasks at the same time. Only one file slot
and one file pointer are used no matter hoH many tasks open
the file. Hence, it is the responsibility of each user task
to ensure data integrity by using 'the lock file or lock
process COIIIIImda. The file IIIUSt be closed by all teaks Hhen
the processing is cmpleted.

A read only randoll access to a file is independent of any
other access to that file. A neM file slot is alN&Ys
allocated Hhen the file is read only opened and a trite to
the file is not permitted.

3.2.2 FILE NAMES

PDOS file names consist of an alpha character (A-Z or a-z)
folloHed by up to seven additional characters. An optional
one to three character extension is separated from the file
name by a colon (:). Other optional parameters include a
semi-colon (;) follOHed by a file directory level and a
slash (/) fo110Hed by a disk number. The file directory
level is a number ranging from 0 to 256. The disk number
ranges from 0 to 127.

A file name beginning with a dollar sign is processed by
PDOS as a system I/0 device driver. Entry points are
provided directly into the channel buffer for OPEN, O.OSE,
READ, HRlTE, and POSITION commands.

lf the file name is preceded by a 'I', the file is created
(if undefined) on all open commands except for read only
open. Hhen passing a file name to a system primitive, the
character string begins on a byte boundary and is terminated
Hith a null.

Special characters such as a period or a space may be used
in file names. HoNever, such characters may restrict their
access. The command line interpreter uses spaces and
periods for parsing a command 1 ine.

Shared random, read on 1 y random access

Shared random access

Read on 1 y random access

FILE
A1234567:890;255/127
PROGRAH/3
FlLE2;10

$TTO,$TTA,$LPT,$CRO

.CF TEHP,ITEHPZ/5

FllEN TEXT 'FlLE1/4'
BYTE 0

PAGE 3-20

;!IIllA,

(

==- -==----===
POOS 2.4 DOCUMENTATION CHAPTER 3 PDOS PAGE 3-21
==~===

3.2.3 DIRECTORY LEVELS

Each PDOS disk directory is soft partitioned into 256
directory levels. Each file resides on a specific level,
Hhich facilitates selected directory listings. You might
put system commands on level 0, procedure files on level 1,
object files on level 10, listing files on level 11, and
source files on level 20. All files are global Hith respect
to a disk directory and can be accessed Hithout referencing
the file level.

A current directory level is maintained and used as the
default level in defining a file or listing the directory
Hhen no directory level is specified. File names are not
unique to a level, hence the sallie file name cannot be used
tHice in any one disk directory.

3.2.4 DISK NUMBERS

A disk number is used to reference a physical secondary
storage device and facilitates hardHare independence. All
data transfers to and from a disk are blocked into 256 byte
records called sectors.

The range of disk numbers is from 0 to 127. Several disk
numbers may share the same secondary storage device. Each
disk can heve a maximum of 65280 sectors or 16,711,680
bytes.

A default disk number is assigned to each executing task
and stored in the task control block. This disk number is
referred to as the system disk and any file name Hhich does
not specHically reference a disk number, defaults to this
parameter.

Some utility programs make use of the system disk for
temporary file storage. By not specifying the disk
parameter, the program becomes device independent and
defaults to the current system disk.

Hhen a task is created, the parent task's disk number and
directory level are copied into the task control block of
the neH task.

256 directory levels

.LV
LEVEL=1

.SY 1

.SY
SYS 01SK=1

===----=========--=--==- :::===:•·=~=~~~=-==
PDOS 2.4 DOCUHENTATION CHAPTER 3 .PDOS PAGE 3-22

=============--=================--=--==--=======================----===-==== -----==

3.2.5 PILE ATTRIBUTES

Associated Hith each file are file attributes. File
attributes consist of a file type, storage method, and
protection flags. These para.ters are ~~aintained in the
file directory and used by the PDOS monitor and file
-.gar.

The file type is used by the PDOS monitor in processing the
the file. For instance, a file typed as 'EX' (a PDOS BASIC
file), invokes the SASIC interpreter, loads the file, end
begins execution Hith the first line number. A file typed
as '08' (a 9900 object IIOdule), is passed to a relocating
loader and loaded into 118110f1'· If a start address tag is
included at the end of the file, the module is immediately
executed.

The follOHing are legal PDOS file types:

AC - Assign console. A file typed 'AC'
specifies to the PDOS monitor that all
subsequent requests for console
character inputs are intercepted and the
character obtained from the assigned
file.

8N - Binary file. A 'BN' file type has no
significance to PDOS but aids in file
classification.

08 - 9900 tag object file. A 11 assembly
user defined COIImands ere typed as
object files. This directs the PDOS
monitor to load the file into memory and
execute the progrM.

SY- Systea file. A 'SY' file is generated
fNlll an '08' file. T19900 object is
condensed into a smaller and faster
loading format by the 'SYFILE' utility.

BX- PDOS BASIC binary file. A BASIC program
stored using the 'SAVEB' command is
witten to a file in pseudo-source token
forll8t. Such a file requires less
memory than the ASCII LIST format and
loads much faster. Subsequent reference
to the file name via the PODS monitor
aut0118tica11y restore the tokens for the
BASIC interpreter and begin execution.

8 defined file types

Relocatable object only

Batch processes

Must be relocatable object

Generated from 08 f i 1 e

·~
I

==--==~===
PODS 2.4 DOCUMENTATION PAGE 3-23

==--==

(3.2.4 FILE ATTRIBUTES continued)

EX- PDOS BASIC file. A BASIC program
stored using the 'SAVE' commar1d is

Hritten to a file in ASCll or UST
format. Subsequent file reference via
the PODS monitor automatically causes
the BASIC interpreter to load the file
and begin execution.

TX- ASCII text file. A 'TX' type
classifies a file as containing ASCII
character text. Reference to the file
name via the POOS monitor causes the
file to be listed to your console.

UD- User Oefined. A ·uo· fne type has no
significance to PDOS other than file
classification.

A PODS file is physically stored in contiguous or
non-contiguous sectors depending upon hOH it Has initially
created. Contiguous files have random access times far
superior to non-contiguous files. A contiguous file is
indicated in the directory listing by the letter 'C'
follOH1ng the file type.

FHe protection flags determine Hhich commands are legal
Hhen accessing the file. A file can be delete and/or Hrite
protected.

File storage method and protection flags are summarized as
folloHs:

C - Contiguous file. A contiguous file is
organized on the disk Hith all sectors
logically sequential and ordered.
Random access in a contiguous file is
much faster than in a non-contiguous
file since the forHard/backHard links
are not required for positioning.

*- Delete protect. A file Hhich has one
asterisk as an attribute cannot be
deleted from the disk until the
attribute is changed.

**- Oelete and Hrite protect. A file Hh1ch
has tHo asterisks as an attribute cannot
be deleted nor Hritten to. Hence, READ,
POSITION, REHIND, and CLOSE are the only
legal file operations.

SAVE "FILE"

Contiguous File

Delete protect

Delete and Hrite protect

--- -----~ ~-------

===========--=-=---==--====================================~=~~~==
POOS 2.4 DOCllMENTATlON CHAPTER:3 PUS PAGE 3-24

======----=:=--------=====================================--~-~-==

3.2.6 TIME ST.AMPING

Hhen POOS ia first initialized, the system prompts for a
date and time. These values are then maintained by the
system clack and are used for time stamping file updates,
assembly listings, and other user defined functions.

When a fHe is first created or defined, the current date
and time is stored Hith the disk directory entry. This time
stamping appears in the 'DATE CREATED' section of a
directory listing. From then on, the creation date and time
are not changed.

Hhen a file has been opened, altered, and then closed, the
current date and time are Hritten to the 'LAST UPDATE'
section of the disk directory entry. The time stamp
indicates Hhen the file Has lest altered by any user.

3.2.7 PORTS, UNITS, AND DISKS

The terms porta, units, and disks are often confused and
hence are explained again:

Ports Porta are logical input channels and
are referenced by numbers 0 through 8.
Associated Hith each port is an
interrupt driven input buffer. The BAUD
PORT command binds a physical 9902 UART
to a buffer.

Units A unit is an output gating variable.
Each bit of the variable directs
character output to a different source.
Bit 1 (LSB) is associated Hith U1C(9)
CRU base. LikeHise, bit 2 is associated
Hith U2C(9) CRU base. The 'SU' and
'SPOOL' commands bind the other bits to
the POOS f i1 e structure.

Disks A disk is a logical reference to a
secondary storage device. Disk numbers
range from 0 to 127. Several disk
numbers may reference the same physical
device. The boot EPROHs decipher Hhat
the disk number means.

PDOS/101 R2.4
GU, COPYRIGHT 1982
OATE=HN,DY, YR 3,5,82
TIHE=HR,HN,SC 12,01

Date created

Last update

===
POOS 2.4 DOCUHENTATlON CHAPTER 3 POOS PAGE 3-25

~ ==--==
\

3 • 3 PDOS MONITOR

The POOS mon;tor is a resident program Hhich handles the
most COIIIIftCin POOS commands. After getting a command 1 ine,
the monitor calls the command line interpreter to parse the
line for commands and parameters. A command line is
delimited bye <carriage return>. lf a comund line is not
complete, your task is suspended pending character inputs.

The PODS monitor prompts Hith a bell follOHed by a period.
These characters are altered by the BFlX utility. A command
line can be up to 78 characters. The escape <esc> or
control C (AC) keys cancel the entire input line. The
rubout <rub> key erases the lest entered character from both
the input line and the character buffer.

A bell signals one of the folloHing: 1) the monitor is
ready to accept a line, 2) a rubout is entered and the
buffer is empty, 3) too many characters are entered, or 4)
the number of characters equals the internal message buffer
size. The latter indicates the maxiiiiUIII command string
length that can be passed to another task.

Numeric parameters are entered as signed decimal, hex, or
binary numbers. A 11 numbers are converted to 2 's comp 1 ement
16-bit integers and range from -32768 to 32767 (hex >8000 to
>7FFF). Hex numbers are preceded by a right angle bracket
(>) and binary numbers by the percent sign (X). (Note:
Numbers are not checked for overflOH. Hence, 65535 is
equivalent to -1.)

You enter more than one PDOS command on a line by
separating the commands Hith e period. C011111and parameters
immediately folloH the command name and ere separated by
commas or spaces. Nested parentheses are used to enclose
parameters Hithin parameters. Hhen multiple commands appear
on the same line, the remainder of the command Hne is
echoed by the monitor as each command is executed.

eo character command buffer

Bell => Buffer ready
Buffer underfloH
Buffer overflOH
Message buffer equivalent

.lH >OF

.CONVERT X1100101,10,>FFE2

.LS.SY 1.LS /1.LV

.CT (CT (ASH PRGH:SR,,llST,ERR),10,,2),12,,Z

.SP.LV.SY
FREE=180
USED=190/200
.LV.SY
LEVEL=1
.SY
SYS O!SK=O

=================================-==========================--=-===
PODS 2.4 DOCUMENTATION CHAPTER 3 PODS PAGE 3-26
===--===

3 • 4 FLOATING POINT MODULE

The PDOS floating point module is a single accumulator, IBM
excess 64 format, multi-user floating point processor. lt
includes all the necessary routines to Hrite assembly
language floating point softHare and supports the PDOS BASIC
interpreter. Commands include the follOHing:

1. Add.it 1 on
2. Subtraction
3. Multiplication
4. Division
5. load accumulator
6. Store accumulator
7. Scale
8. Clear
9. Float

10. Normalize
11. Negate
12. Absolute val~
13. Multiplicative inverse
14. load clock tics
15. load error register
16. Return accumulator status

Floating point operations are called Hith XOPs 0 through 8.
The floating point accumulator is saved in the task list
after each SHap operation.

··""""

.··~

