PROGRAMMER’S
REFERENCE
MANUAL

BY:
PAUL R. ROPER

EYRING RESEARCH INSTITUTE INC
1455 West 820 North
Provo, Utah 84601
(801) 375-2434

Published by

EYRING RESEARCH INSTITUTE, INC.
1455 West 820 North

Provo, Utah 84601

(801) 375-2434

PDOS 2.4
PDOS PROGRAMMER'S REFERENCE MANUAL

HWritten by Paul Ross Roper

A1l rights reserved. No part of this publication
may be reproduced without the prior written
permission of EYRING RESEARCH INSTITUTE, INC.
ERII reserves the right to make changes at any
time in order to improve design and shall not be
responsible for any damages caused by reliance
on the materials presented in this manual.

Please call (801) 375-2434 for more information.
Copyright 1982.

PD 201-1020 REV D.

PDOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION

CHAPTER 1

INTRODUCTION

PDOS is a powerful multi-user, multi-tasking operating
system developed by Eyring Research Institute, Inc., for the
Texas Instruments compatible processor family. Chapter 1 is
intended to give you a flavor of the operating system
environment along with a glossary of terms used throughout
this manual.

1.1 HOW TO USE THIS MANUAL.......... seesesesesssenans veee1-2
1.2 PDOS SYSTEM. ..vuvvererierreeneeecacanconncncscacanas .1-6
1.2.1 PD0OS DESCRIPTION.......cvceveeevnnnccncccns 1-5
1.2.2 PDOS FUNCTIONAL DESCRIPTION.......cceveeeee 1-6
1.3 PDOS DEMONSTRATION......ccceeerenerreecaccnnnnnsecns .1-9

1.4 GLOSSARY . svvvevercoroncnnsscssssssnssanences ceeeses =17

PDOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION

1.1 HOW TO USE THIS MANUAL

This manual is designed to be a comprehensive introduction
to PDOS. It includes instructions for booting, testing, and
trouble shooting the system, and covers all monitor
commands, assembly primitives, and utilities. Examples and
a full demonstration session is also provided. This is
‘accompanied by an audio cassette demonstration tape to make
it even more usable.

Each chapter is marked by a tab, with a table of contents
for that chapter located at the tab. You may also find, at
some tabs, appropriate summaries of the material in the
chapter. These pages are supplementary to the text itself.
Since they are not numbered, you may remove them from the
binder and use for reference in any Way convenient to you.

You receive the most benefit from this manual if you first

read through the table of contents for each chapter and then

quickly scan the entire manual for an overview. This would
be followed by a more detailed study of those chapters
pertaining to your system. The examples to the right of the
text are helpful in clarifing various concepts.

This manual is organized in a top donn manner: more general
and 1less complex material is covered first. Specific
chapter contents are as follows:

Chapter 1 is an introduction to a PDOS system.
Chapter 2 deals With system installation and start up
procedures. This includes explanations on verious hardware

components 1ikely to be found in a PDOS systenm.

Chepter 3 describes in detail the PDOS operation system:
kernel, file manager, monitor, and floating point module.

Chapter 4 describes the monitor commands.

Chapter 5 examines the assembly primitives of the PDOS
kernel and file manager.

Chapter 6 lists the floating point XOP's and how they are
used.

Chapter 7 shows how to use and created PDOS 1/0 drivers
which are an extension of the file system.

Chapter 8 gives a very detailed description of how to add
new secondary storage devices to the PDOS boot EPROMs.

/

This manual

Tabs

Supplementary pages

First, scan entire manual

Organization of manual

Introduction

Installation

POOS system

Monitor commands

Assembly primitives

Floating point package

1/0 drivers

Secondary storage DSR's

PDOS 2.4_Q6CUHENTATION CHAPTER 1 INTRODUCTION PAGE 1-3

(1.1 HOW TO USE THIS MANUAL continued)
Chapter 9 covers PDOS BASIC, including a small BASIC primer PDOS BASIC
and examples of more complex BASIC programs.

Chapter 10 is a reference chapter for all BASIC commands, PDOS BASIC command summary
functions, and statements.

Chepter 11 is divided into assembler, editor, linker, and Assembler, editor, linker, debugger
debugger sections.

Chapter 12 describes and gives examples on how to take your Run module
standalone applications and configure an EPROMable run

module.

Chapter 13 finishes with detailed descriptions of the more Utilities

common PDOS utilities.

The appendices give detailed descriptions of PDOS errors, Appendices
driver listings, and command summaries.

This manual is written 1in two columns. The Jleft hand Quick reference
column functions much as does the text of any book. The

right hand column functions as an outline of the material in

the left hand column plus addition examples and

explanations. Use it for quick reference to specific

topics.

A reply card is also included for your use. While we have Reply card
done our best to meke this manual error free, we know that

there will be mistakes, and would appreciate your help in

making the next edition better than the current one. Please

let us knon any major'mistekes or suggestions for chapters

that need expansion.

This manual assumes a moderate amount of computer hardware Further reference
and software knowledge on Yyour part. It also assumes

tamiliarity for the TM390 board 1line and the TMS 9900

microprocessor. Such information 1is available in one or

more of the following references:

Cannon, Don L. 1982. FUNDAMENTALS OF MICROCOMPUTER DESIGN
- SYSTEM HARDWARE AND SOFTWARE. Dallas, Texas: Texas
Instruments.

Texas Instruments Inc. 1979. INTRODUCTION T0
MICROPROCESSORS - HARDWARE AND SOFTHARE. Houston, Texas:
Texas Instruments.

Texas Instruments Inc. 1981. TM990/101MA MICROCOMPUTER
USER'S GUIDE. Houston, Texas: Texas Instruments.

Texas Instruments Inc. 1981. TM990 MICROCOMPUTER CATALOG.
Houston, Texas: lexas Instruments.

PDOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-4

(1.1 HOW TO USE THIS MANUAL continued)

Texas Instruments Inc. 1978. TMS90 POWER BASIC REFERENCE
MANUAL. Houston, Texas: Texas Instruments.

fexas Instruments Inc. 1978. TMS 9900 MICROPROCESSOR DATA
MANUAL. Houston, Texas: Texas Instruments.

Zarrella, John. 1981. MICROPROCESSOR OPERATING SYSTEMS.
Suisun City, California: Microcomputer applications.

NOTATION

) Hexadecimal number. (e.g., >IFFF =
decimal 8191.)

% Binary number . (e.g.,
%00011111111111111 = decimal 8191.)

<) Parameter used with a PDOS command or
primitive, (e.g., DL <file name>
indicates that the OL command requires a
tile name as a parameter.)

{)} Optional. (e.9., SA <(file name)
{,¢attributes>} indicates that the
parameter <attributes’> is optional.)

(Rx) Indirect addressing. (e.g., (R2) =
Buffer refers to register R2 pointing to
a butfer.)

- Control character. (e.g., “C denotes a

hexadecimal >03 character.)

r

PDOS 2.4 DOCUMENTATION

CHAPTER 1 INTRODUCTION

PAGE 1-5

1.2 PDOS SYSTEM

- Real-time, multi-user, multi-tasking

= Prioritized, round-robin scheduling

- Intertask communication and synchronization

- Paged or mepped extended memory modes

- Sequential, random, and shared file management
- Hardware independence

- 9900 layered design

- Complete floating point support

- Configurable, modular, ROMable standalone support:

1.2.1 PDOS DESCRIPTION

POOS is a powertul multi-user, multi-tasking operating
system developed by Eyring Research Institute, Inc., for the
Texas Instruments compatible processor temily. You use PDOS
to design and develop scientific, educational, industrial,
and business applications.

PDOS consists of a small, reel-time, multi-tasking kernel
layered by tile management, floating point, and user monitor
modules. The 2K byte kernel provides synchronization and
control of events occurring in a reai-time environment using
semaphores, events, messages, mailboxes, and suspension
primitives. A1l user console I/0 as well as other useful
conversion and housekeeping routines are included 1in the
PDOS kernel.

The file management module supports named files wWith
sequential, random, and shared access. Mass storage device
independence is achieved through read and wnrite logical
sector primitives. fhe designer is relieved of real-time
and task management problems as well as user console
interaction and file manipulation so that efforts are
concentrated on the application.

Assembly language tloating point applications are no longer
a problem. Conversion modules, assembler directives, and
operating system calls allow easy integration of floating
point operations into your application programs.

Multi-user, multi-tasking

USER APPLICATION

BASIC MONITOR

FILE MANAGER FLOATING POINT

PDOS KERNEL

File management module

Floating point development

PDOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION

PAGE 1-6

(1.2.1 PDOS DESCRIPTION continued)

PDOS is easily contigured for eny combination of large or
small floppy disks, bubble memory devices, or Winchester
mass storage devices. A wide variety of target system
contigurations are supported for fast development of
memory-etficient, cost-effective end products.

1.2.2 PDOS FUNCTIONAL DESCRIPTION

PDOS KERNEL. PDOS 1s written in 9900 assembly language for
tast, etficient execution. The small kernel provides
multi-tasking, real-time clock, event processing, and memory
menagement functions. Ready tasks are scheduled using a
prioritized round-robin method. Three XOP vectors are used
to interface over 75 system primitives to a user task. .

MULTI-TASKING EXECUTION ENVIRONMENT. Tasks are the
components comprising a real-time application. Each task is
an 1ndependent program that shares the processor with other
tasks 1in the system. Tasks provide a mechanism that allows
a complicated application to be subdivided into several
ndependent, understandable, and manageable modules.
Real-time, concurrent tasks are allocated in 1K byte
increments.

INTERTASK COMMUNICATION and SYNCHRONIZATION. Semaphores
and events provide a low overhead facility for one task to
signal another. Events indicate availability of a shared
resource, timing pulses, or the occurrence of a hardware or
sottware interrupt. Messages and mailboxes are used in
conjunction with system lock, unlock, suspend, and event
primitives.

MEMORY REQUIREMENTS. PDOS is very memory etficient. The
POOS kernel, floating point module, file manager, and user
monitor utilities require only 8K bytes of memory plus an
additional 4K bytes for system buffers and stacks. Most
applications sre both developed and implemented on the
target system. Further memory reduction is achieved by
linking the user application to a 2K byte PDOS kernel for a
small, ROMable, standalone, multi-tasking module. A fast,
6K byte scientitic oriented BASIC interpreter Wwith real-time
primitives provides interactive high level language support
8s Hell. For large system configurations, PDOS effectively
addresses up to & Megabyte of memory in either paged or
memory mapped mode.

‘Secondary storage

PDOS kernel

Multi-tasking execution environment

Intertask communication and synchronization

Memory requirements

PQOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-7

(1.2.2 PDOS FUNCTIONAL DESCRIPTION continued)

FILE MANAGEMENT. The POOS file management module provides File management
sequential, random, read only, and shared access to named
tiles on a secondary storage device. These low overhead
tile primitives use a linked, random access file structure
and a logical sector bit map tfor allocation of secondary
storage. No file compaction is ever required. Files are
time stamped with date ot creation and last update. Up to
32 files can be simultaneousiy opened. Complete device
independence is achieved through read and write logical
sector primitives. Supported devices include floppies,
bubble and battery pack-up memories, Winchester disks, and
streaming tape drives.

COMMAND LINE INTERPRETER. The PDOS monitor calls the Command Line Interpreter
command line 1nterpreter. The CL1 parses the command line
tor multiple commands and parameters. Utilities such as
sppend, define, delete, copy, rename, and show file are
resident and execute Hithout destroying current memory
programs. UOther functions 11n the PDOS monitor include
setting the baud rate of a port; checksumming memory;
creating tasks; I1sting tasks, tiles and open file status;
asking tor help; setting tile level, tile attributes,
interrupt mask, and system disk; and directing console
output.

INTERRUPT MANAGEMENT. The PDOS kernel hendles user Interrupt management
console, system clock, and other designated hardware
interrupts. User consoles are interrupt driven wWith
character type s8shead. A task can be suspended pending a
hardwere or sottWare event. POOS switches control to a task
suspended on an external event within 500 microseconds after
the occurrence ot the event (provided the system mask is
high enough.) Otherwise, a prioritized, round-robin
scheduling of ready tasks occurs on 8 millisecond intervals.

PORTABILITY. Sottware security exists throughout the 9900 Portability
product tamily (including 9940, 9980, 9995, and 99000).

PDOS supports all TM390 products from Texas Instruments and

Eyring Research Institute Inc., in addition to an expanding

list of STD TMS9985 boards.

PDOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-8

o o e o

(1.2.2 PDOS FUNCTIONAL DESCRIPTION continued)

CUSTOMER SUPPORT. Numerous support utilities including Customer support
virtual screen editor, assembler, linker, macroprocessor,

EPROMing, disk diagnostics and recovery, and disk cataloging

are standard. Single stepping, multiple break points,

memory snap shots debugger, task save and restore commands,

and error trapping primitives 1n all high level languages

are all provided to aid in program debugging. Free upgrades

are aveilable With hotline service to system cevelopers. An

optional modem service is provided for tast access to newW

prooucts.

POOS 2.4 DOCUMENTATION

CHAPTER 1 INTRODUCTION

PAGE 1-9

1.3 PDOS DEMONSTRATION

This section gives you a sample PDOS keyboard session. It
18 not intended as a start up procedure for neWw users, but
rather, to give the tlavor ot the PDOS operating system
environment.

All entries are terminated by a carriage return <CR> unless
othernise speciftied. Your entries are all underlined and
indicated on those lines With a rignt bracket (?) 1in the
lett column.

Terminal session

R
*pO0oS BOOT R2.4
0-99=B001

J00=MEMORY TEST
101=1AC

102=B001

103=MAKE BOO1

104=AUX
?2100,57274............

~

~

SRESTART . B> <CR>
#PD0S BOOT RZ.4
0-99=B001

-I00=MEMORY TEST
101=1AC

102=B001

‘l03=MAKE BOOT
‘104=AUX

> 74CR>

BOOTED!

<R

PDOS/101 R2.4

ERII, COPYRIGHT 1982
DATE=MN,DY,YR 78,82
TIME=HR,MN,SC 10,30

~

~ v

Comments

Begin execution ot the PDOS boot
program via the RESTART.B vector

at memory address >FFFC. A carriage
return <CR> automatically sets your
console port to the correct baud rate.

System memory from >0000 to >DFBB is
tested by writing and verifying random
numbers throughout memory. A period
indicates a complete memory pass wWithout
error.

The RESTART.B vector must be used to
stop the memory test.

A (CR> selects a boot from the main disk.

The PDOS banner prompts for date and time.
Terminate all entries with a <CR> unless

otherwise specified. Date and time numbers

can be separated by commas or spaces.
Seconds are optional.

POOS 2.4 OOCUHENTATION CHAPTER 1 INTRODUCTION PAGE 1-10

(1.3 PDOS DEMONSTRATION continued)

> LLT ‘LT' lists the currently executing tasks.
"~ TASK PAGE TIME B8 WS PC SR BM EM CRU PORT
The 'HE LT' command explains the ‘LT’
*0/0 0 3 »6020 >619A >0828 >1005 >6000 >E000 >0080 >0001 parameters. Notice that task memory

> HE LT begins at >6000 and ends at >E000. The
List Task headings explanation: task input port is console port #1 and

TASK Task # / spawned task #, current = ‘x' task output is at CRU base >0080.
PAGE CRU memory page number
TIME Tics in CPU queue or suspension event When the system first boots, only your task
B Task control block pointer is executing, namely the system task (0).
WS HWorkspace pointer
PC Program counter
SR Status register
BM Beginning ot task memory
EM End ot task memory

CRU Tesk output port CRU base
PORT Task input port number

> .HE_PDOS ' The 'HE' command is non-destructive (wWon't
PDOS resident commands are: affect any current programs) and is used
to get explanations of PDOS commands,
AF - Append file LM - Available memory utilities, and error messages.
BF - Baud port LS - List directory
CF - Copy file LT - List tasks Current PDOS commands are listed.
€S - Checksum LV - Directory level
C1 - Create task RC - Reset console
DF - Define file RN - Rename file
DL - Delete file RS - Reset disk
EV - Set/Reset event Rl - Restore task
EX - PDOS Basic SA - Set attributes
FS - File slots SF - Show file
GO - Execute SP - Disk space
HE - Help S1 - Save task
ID - Init dete SU - Set spool unit
IM - Interrupt mask SY - System disk
K1 - Kil1 task UN - Set output unit
> .DFDSSDFK PDOS errors range from 50 to 99.
PDOS ERR 53 »
> .HE 53 Error descriptions are listed by 'HE'

File Not Defined folloned by the error number.

PDOS 2.4 DOCUMENTATION

CHAPTER 1 INTRODUCTION

PAGE 1-11

(1.3 PDOS DEMONSTRATION continued)

> L

LEVEL="1

> .5Y

DISK=4

> .SP

FREE=1185, 1022
USED=6753/6842

> .CS.RS.LM

.RS.LM
.LM
FREE=0

-EV

»0000 >0000 »0000 >0000 >0000 >0000 >0000 >FFFF

> LS
DISK=HINCH #4/4

LEV NAME:EXT

ALOAD
ASM
BACKUP
BFIX
BURN302
BURNP
COoMP
ODMAP
0O0UMP

- e e e W e = D2

TYPE

sY

SIZE

8/8
52/52
6/6
1M/11
19/18
9/9
19/19
9/9
717

DATE CREATED

10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82

FILES=248/512
LAST UPDATE

10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82

PDOS supports 256 directory levels for each
disk number. Current level is 1.

The SY command lists the current disk number.
POOS supports up to 128 different logical
disk numbers. Each disk number has its own
directory and sector allocation bit map.
Each disk number corresponds to some physical
secondary storage device such as a disk or
tape drive.

The SP command lists the current disk's
FREE and USED sectors. Each sector corres-
ponds to 256 bytes of data.

Multiple commands are entered on the same

line by separating commands With periods.

Parameters are separated by commas.

The command 1ine echoes again for each new
command.

Events are used for task synchronization.
Each event is a single bit. The system
events (96-127) are set.

The directory of any disk is listed to your
console by the 'LS' command. The current
disk and directory level are used if not
specified in the command list. Each file
is time stamped with date of creation and
date of last update. The file size shows
the number of sectors actually used versus
the number of sectors allocated to the
file from the sector bit map. Hitting any
key gives a pause in the listing.

Hitting another key continues the listing.
The <escape> key terminates the output.

POOS 2.4 DOCUMENTATION

CHAPTER 1 INTRODUCTION

PAGE 1-12

(1.3 PDOS DEMONSTRATION continued)

> .HE FILES
valid file types are as follows:

AC = Procedure file C = Contiguous

0B = 9900 object file * = Delete protect

SY = System file =* = HWrite protect

TX = ASCII text file

BN = Binary file

EX = BASIC program

BX = BASIC binary program

U = User defined file

) .LS /4

DISK=NINCH #4/4
LEV NAME:EXT TYPE SIZE DATE CREATED
0 $LPT BN 1 10:13 07/02/82
0 $TTA BN 11 10:13 07/02/82
0 $TT0 BN 1 10:13 07/02/82
0 $TTS BN 11 10:13 07/02/82
10 ADUMP:SR ™ 10/10 10:09 07/02/82
6 ADV:DAT BN C 2067206 10:25 07/02/82
5 ADVENT sY 68/68 10:26 07/02/82
1 ALOAD sY 8/8 10:14 07/02/82
2 ALOAD:SR TX 43/43 10:17 07/02/82
10 ART:SR TX 23/23 10:06 07/02/82
1 ASM SY 52/52 10:14 07/02/82

FILES=248/512
LAST UPDATE

10:13 07/02/82
10:13 07/02/82
10:13 07/02/82
10:13 07/02/82
10:08 07/02/82
10:26 07/02/82
10:26 07/02/82
10:14 07/02/82
10:17 07/02/82
10:06 07/02/82
10:14 07/02/82

The PDOS monitor uses the file type in
controlling file processing. A file typed
as 'OB' contains Tl tagged object and is
relocatably loaded into task memory and
executed; similarly with 'SY' files. ‘EX’
files are directed to the resident BASIC
interpreter, loaded and and executed.

A1l files on disk number 4 (use your own disk
number) are listed by the ‘LS 3/4' command.

The name of the disk listed here is 'WINCH #4'.
The current number of files in the disk
directory and the directory size are

also listed on the same line.

-

PDOS 2.4 DOCUMENTATION

CHAPTER 1 INTRODUCTION

PAGE 1-13

(1.3 POOS DEMONSTRATION continued)

)

)

>

)

.SF_UPTIME

100 REM UPTIME

110 DIM D[1],M[2],T[1],K[2])

120 DATE $D{0]: TIME $T[0]: T=T1C O

130 M=$D[0): D=$0[0;4]: Y=$D[0;7]: C=19

140 M1=M-2: IF MI<1: NI=M1+12: Y=Y=-1: IF Y<0: C=C-1
150 W=INT[2.6%M1-0.19]+D+Y+INT[Y/4]-2*C+INT[C/4]
160 W=INT[W-INT[W/7]*740.5]: IF W<O: HW=H+?

200 RESTORE W+1: READ $W[0]

210 DATA “"Sunday",“Monday","Tuesday",“"Wednesday"
220 DATA "Thursday","Friday","Saturday"

230 RESTORE M: READ $M[0)

240 DATA “Jvanuary","February",“March","April*

250 DATA "May",“June","July",“August","September"
260 DATA “October","November","December"

300 PRINT “loday is “;$W[O];", “:$M[0];D;",";C*100+Y;

310 PRINT “. The time 1s ",;$T[0];"."
320 DAY=INT[1/10800000]: T=T-DAY*10800000
330 HRS=INT[1/450000]: T=1-HRS*450000
340 MIN=INT[T/7500]: T=1-MIN*7500

350 SEC=IN1[1/125]

360 PRINT "PDOS has been up for";

370 IF DAY: PRINT DAY;" cays,“;

380 IF HRS: PRINT HRS;" hours,";

390 IF MIN: PRINT MIN;" minutes, and";
400 PRINT SEC;" seconds.";

410 BYE

.UPTIME

Today 18 Wednesday, July 7, 1982. The time is 10:45:16.

PDOS has been up tor 17 minutes, and 55 seconds.
.HE BP
Format: BP <port),<rate’>{,<base>}

where <port>=1-8 (- sets UNIT 2 base)
<rate>=10,300,600, 1200, 2400,4800,9600, 19200
(baser=nen 9902 CRU base

.BP_2,1200.IM 5
M 5

> .LF _UPTIME $TTA

You display a file to your console wWith
the 'SF' or Shon File command. ‘UPTIME'
is an 'EX' or BASIC program.

'UPTIME' is executed by typing the file name.

You change or set port baud rates With
the 'BP' command. The range is from 110
to 19200 baud. Each port is initialized
to output only at 1200 baud on power up.
1f another baud rate is required or the
port is to be used for input, then the
'‘BP' command must be used.

Port 2 is bauded for input and output at

1200 baud. The CPU interrupt mask is set
high enough (using IM) to allow character
interrupt inputs from port 2.

The CF command is used to copy the file

POOS 2.4 DOCUMENTATION

CHAPTER 1 INTRODUCTION

PAGE 1-14

(1.3 POOS DEMONSTRATION continued)

> .BP_2,19200

> .CT_,16,,2
TASK #4

> LT

T;gK PAGE TIME T8 WS PC SR BM EM

*0/0 0 3
4/0 0O

» LV 99

> LS

DLSK=WINCH #4/4

LEV NAME:EXT

~

.DF_DEMOF 10
’ LS

OISK=HINCH #4/4

LEV NAME:EXT

93 DEMOF

~

-97

CRU PORT

»6020 »619A »0828 »CO05 »6000 »A000 >0080 >0001
>A020 >A19A »075A »C405 >A000 >EO0O0 »0180 >0002

FILES=248/512

TYPE SIZE DATE CREATED LAST UPDATE
FILES=249/512

TYPE SIZE DATE CREATED LAST UPDATE
c 1710 10:45 07/08/82 10:45 07/08/82

.oCF_TEMP , DEMOF

’ LT

TASK PAGE TIME B WS PC SR

BM EM CRU PORT

*0/0 0 3 >6020 >619A >0828 >C005 »6000 »9CO0 >0080 >0001
40 0 =97 >A020 >A19A >075A >CA05 >A000 >E000 >0180 >0002
5/0 O 1 »9C20 >90DDA >FFCC »9005 >9C00 »A000 >0000 >0000

> .HE FS

File Slot usage explanation:

SLOT File slot #

NAME File name/disk #

ST File status

SM Current sector 1n memory
PT Current file pointer

S1 Sector index of SM

SE Sector index of EUF sector
BE # of bytes in EOF sector
™ Task number which opened file
BF Bufter pointer

LF Lock fiag

You can change port baud rates at any time.

A nen task (or user) is created by the
‘CT* command. The task number is assigned
by PDOS. The nen task is 16K bytes in size
and is assigned as task number 4. Port 2
i8 used for any task 1/0.

A summary ot the current tasks is listed
by the 'LT' command. Since there is no
free memory available, memory for the new
task is taken from the spawning task's
memory. The task time lists as '-97'
because the task is asleep pending an
input character from port 2.

Directory level 99 is selected.

A contiguous file named '‘DEMOF' is created.
Ten sectors are initially allocated.

(This is optional if a non-contiguous

file is acceptable.)

Another wWay to create a task is With the

‘@’ command. 1f the command line is
preceded by ‘@', then a new task is created
defaulting to 1K of memory and no console
port assignment (phantom port). The new
task copies, in background, the file

‘TEMP' into 'DEMOF'. The task automatically
kills itself when completed since it has

no input port.

The current files open under PDOS are
monitored by the 'FS' command. The file
name along With assigned file slot number
and parameters are listed.

PDOS 2.4 DOCUMENTATION

CHAPTER 1 INTRODUCTION

PAGE 1-15

(1.3 PDOS DEMONSTRATION continued)

> .ES
SLOT NAME ST SM PT

1 [EMP/4
32 DEMOF/4

» .E0IT
EDIT R2.3x

*ISTART XPMC <OUTPUT MESSAGE

DATA MESO1

Sl

XEXT ZEXIT BACK TO PDOS

*

)
>

>

’ -

> MESO1 _BYTE »0A,>00 LCRLF
> TEXT 'IT WORKS!!®
)
>
)
>

BYTE O
END START

$$
*1$$
START XPMC
DATA MESO1

,OUTPUT MESSAGE

XEXT JEXIT BACK TO PDOS

MESO1 BYTE >0A,>00 JCRLF
TEXT ‘IT WORKS!!®
BYTE O

END START

> *GODEMOF
> .ASM_DEMOF , #DEMOF :0BJ, #L1ST
ASM R2.4
SRCE=DEMOF
0BJ=H#DEMOF :0BJ
LIST=#LIST
ERR=
XREF=

END OF PASS 1
0 DIAGNOSTICS
END OF PASS 2
0 DIAGNOSTICS

SE

BE

N

BF

LF

>UA04 >11B0 >2510 >0009 >001A >0060 >0005 >2410 >0000
>4104 >1B74 >2614 >0009 >0036 >0030 »0005 >2610 >0000

Assembly language development is very
easy. Since it is hard to demonstrate
the screen editor on paper, the character
edit is used in this example. The ‘$’' is
echoed when the <escape> character 1is
entered. This program outputs a message
and then exits back to PDOS.

Notice that the assembler supports all
PDOS primitive calls.

The file is non ready to be assembled

by the utility 'ASM'. The object is
Written to a new file called 'DEMOF:0BJ’.
The '#' in front of the file name tells
PDOS to define the file if it is not
already defined. A listing of the
assembled program is written to a file
called 'LIST'.

The list file is displayed to your
console With the Show File 'SF’
command.

PDOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-16

-

(1.3 PDOS DEMONSTRATION continued)

> .SF LIST Shon list file.
PDOS ASM R2.4
PAGE: 1 11:03 07/07/82 FILE: DEMOF,HINCH #4
1 0000: 2F58 START XPMC ;OUTPUT MESSAGE
2 0002: 0006° DATA MES01
3 0004: 2FC5 XEXT ,EXIT BACK TO PDOS
4 *
5 0006: OAOD MESO1 BYTE »0A,>00 ;CRLF
6 0008: 4954 2057 4F52 TEXT 'IT WORKS!!'
000E: 4B53 2121
7 0012: 0000 BYTE O
8 0013 0000* END START
PDOS ASM R2.4
PAGE: 2 11:03 07/07/82 FILE: DEMOF,WINCH #4
18 SYMBOLS

MESO1 R 0006 RO A 0000 R1 A 0001 R10 A OODA
R11 A 000B R12 AO0OC R13 A OOOD R14 A OOCE
R15 A 0OOF R2 A 0002 R3 A 0003 R4 A 0004
RS A 0005 R6 A 0006 R? A 0007 RS A 0008
RS A 0009 START R 0000

> .SA_DEMOF,TX The file attributes are automatically set
> .LS by the assembler on the object file. The
DISK=KINCH #4/4 FILES=260/512 source file, however, requires the 'SA'
LEV NAME:EXT TYPE SIZE DATE CREATED LAST UPDATE command to set the text attributes (TX).
99 DEMOF TX C 1710 10:45 07/08/82 10:45 07/08/82
899 DEMOF:08J 08 11 10:45 07/08/82 10:45 07/08/82
> .DEMOF:08J Finally, you execute the new program
IT HORKS!! by entering the file name.
> LT

TASK PAGE TIME T8 HS PC SR BM EM CRU PORT

*0/0 O 3 >6020 >618A >0828 >CO05 >6000 >A000 >0080 >0001
40 O =97 >A020 >A19A >075A »C405 >ACC0 >EC00 »>0180 >0002

) KT 4 You terminate a task with the 'KT' command.
LT

TASK PAGE TIME TB WS PC SR BM EM CRU PORT

~

*0/0 O 3 >6020 >619A >0828 >1005 >6000 >E000 >0080 >0001

-

PDOS 2.4 DOCUMENTATION

CHAPTER 1 INTRODUCTION

1.4 GLOSSARY

ASCII1 Literal ASCIL literals create special

Assembler

Auto Baud

Bit Map

Blocked

Buffer

Command Line

Interpreter

Compiler

Concurrency

characters wWithin strings that normally
cannot be represented by a single
printable character. An ASCII Tliteral
is composed of tWo hex characters wWithin
angle brackets.

A language translator that translates
ASCII text into machine code. The input
language transiates one text line into a
single machine instruction.

Auto bauding is a technique used to set
a port baud rate by timing the character
length using a software program. A
single character of a known bit pattern
is used.

A data structure utilized by PDOS for
both memory and file space allocation.
A single bit in the memory bit map is
associated wWith each block of memory in
the system. Likewise, each sector on a
logical disk device is associated with a
single bit in the sector bit map on the
disk header. A ‘one’ indicates the
corresponding sector is allocated, and a
‘zero' indicates that the corresponding
sector is free.

Another term for the suspended task
state.

A temporary block of memory, usually
used for message and 1/0 transfers.

The Command Line Interpreter is a small
system software module which parses a
line for commands and parameters. The
CLI is called by the PDOS monitor.

A language translator that translates
the text of a high level language into
assembly or machine code.

Processes or tasks whose execution
overlaps in time. They may be
interacting or independent.

ASCII Literal

Assembler

Auto Baud

Bit Map

Blocked

Buffer

Command Line Interpreter

Compiler

Concurrency

PDOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-18

(1.4 GLOSSARY continued)

Contention A situation that occurs when more than Contention
one task vies for a single resource.

CRC An abbreviation for Cyclic Redundancy Cyclic Redundancy Code
Code, an error checking technique that
provides a high degree of error
detection. It is often used for data
transmission links and disk controllers,
Where burst errors are frequent.

Create A system service that initializes a Create
structure by entering information such
as its name, size, etc. into system
tables. Specifically, PDOS supports
task and file creation.

Critical Code A portion of softtware that accesses a Critical Code

shared resource and must be protected so
that while one task is performing the
access (executing the software), no
other task is permitted to access the
same resource. In most cases, either
interrupts are disabled during the
execution of this code or the task is
Tocked.

Data Base A large and complete collection of Data Base
information that covers a variety of
subject areas.

Deadlock A situation that occurs rhen all tasks Deadlock
Within a system are suspended, waiting
for resources that have already been
assigned to other tasks that are also
waiting for additional resources.

Debugger A system software utility that aids a Debugger
programmer in locating errors in his
sottware. Functions usually include
breakpoints, single stepping, memory
inspect and change, disassembly, and
assembly.

Device A unit of peripheral hardnare such as a Device
printer, terminal, or disk.

Device Driver A system sottware module that directly Device Driver
controls the data transfer to and from
an 1/0 peripheral. PDOS device drivers
gre an extension of the file systenm.

o e o o o e o e o

PDOS 2.4‘DOCUM£NTATION CHAPTER 1 INTRODUCTION PAGE 1-19

(1.4 GLOSSARY continued)

Directory A data structure containing entries for Directory
each file in the file system of a
storage device. Each directory entry
contains information about the file
name, access rights, size, date of
creation, and last update.

Disk number A disk number 1is used by PDOS to Disk number
reference a disk device. A single
hardware device may be referenced by
several disk numbers.

DMA An I/0 processor memory access Direct Memory Access
technique whereby the system processor
is placed in a hold state while the I1/0
processor transfers data to or from
memory, independent of the gsystem
processor and usually at the maximum
memory data rate.

Edi tor A system utility that permits a Editor
programmer to create, modify,
concatenate, or delete portions of files
on a secondary storage device. Editors
operate almost exclusively on text
files. Types of editors include
character, line, and screen editors.

End of File A soft pointer to the end of “known" End of File
data within a tile.

Entry Point The programmer defined address at which Entry Point
a task begins executing.

Event A condition used to synchronize task Event
execution. An event may have a hardware
or software origin. Hardware events
result from processor interrupts.
Software events are either user or
system defined and are used to
coordinate system tasks or resources.

Execution The Execution Module consists of the Execution Module
Module PDOS kernel plus other non-file oriented
primitives. This object module is
linked wWith user application tasks to
form a ROMable, standalone program for
the target processor. Other execution
modules are also linked in for high
level language support.

PDOS 2.4 DOCUMENTATION

CHAPTER 1 INTRODUCTION

(1.4 GLOSSARY

File

File
Attributes

File Slot

File System

File Type

First Fit

Foreground/
Background

Format

Fragmentation

continued)

A collection of data, normally stored
on @ storage device such as a disk or

tape.

File attributes are file status bits
indicating the file type, disk storage
method, and protection flags.

A file slot is a logical 1/0 channel
through which data transfers from an
user application to secondary storage or
other 1/0 device. The file slot
maintains file status, pointers, and
buffers.

System software modules that manage
files on storage media. Functions
include create, delete, reneme, read,
write, position, protect, etc.

File types are attributes used by the
POOS monitor in determining how a file
is processed.

An algorithm for memory allocation that
searches the free 1list (bit map) only
long enough to find an unused memory
block that is 1large enough to satisfy
the memory request.

A condition within a multi-tasking
operating system where critical programs
operate in the foreground and execute
With high priority while background
assemblies, edits, listings, etc., are
also going on at a lower priority.

A system utility that initializes
storage media With information necessary
to assure that data can subsequently be
read or written wWithout error. This
generally entails soft-sectoring disk
tracks with address and ID marks which
are detected by the hardware controliler.

A condition where main ‘memory or
secondary storage 1is segmented due to
dynamic memory allocation and
deallocation.

File

File Attributes

File Slot

File System

File Type

First Fit

Foreground/Background

Format

Fragmentation

POOS- 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-21

(1.4 GLOSSARY continued)

Friendly A software environment in which all Friendly Environment
Environment software 1is adequately tested and

theretore one task does not interfere

With or cause errors in the execution of

another task. The operating system

cannot prevent intertask conflicts.

Garbage A system utility which reallocates or Garbage Collection
Collection recovers system resources (such as
fragmented memory) for further use.

Hard Error An error which is predictable eand Hard Error
repeatable.
High Level A more sophisticated coding language High Level Language

Language than assembly language. One high level
instruction generates many machine
instructions. (e.g. FORTRAN, BASIC,
PASCAL, etc.)

Hostile A system software environment in which Hostile Environment
Environment it 1is assumed that both hardware and

sottware may fail in any way, and the

system 1s required either to continue

running or shut 1itself down 1in an

orderly manner.

In Circuit A capability provided on many In Circuit Emulation
Emulation microcomputer development systems that

enables a system designer to use the

facilities of the development system to

debug prototype hardwere and software.

Index Table A table utilized for reading and Index Table
Writing random access files with
variable record sizes.

Initialize A disk is initialized such that PDOS Initialize

parameters are available to the file
manager. These include disk name,
number of directory entries, total
number of sectors available, date of
initialization, density and sides flags,
directory, and sector bit map. Any bad
sectors are deallocated from user
storage.

POOS 2.4 DOCUMENTATION

=

CHAPTER 1 INTRODUCTION

PAGE 1-22

(1.4 GLOSSARY continued)

Interleaving A track formatting technique wrhereby

Interleave
Factor

Interpreter

Interrupt

Interrupt
Mask

Interval

Timer

1/0 Channel

ISAM

Kernel

Linked List

multiple sectors may be read or written
sequentially wWith a minimum of disk
latency. This 1is possible by placing
logical sectors on a track in such a way
that the time required by the system
service routine to process a single
sector 1is less than the time required
tor the disk to rotate to the start of
the next logical sector.

The number of physical sectors between
a given sector and the next logical
sector on a disk track.

A language translator that accepts high
level language text and transiates this
text into a special intermediate code
that is interpreted by a system program.
Usually this intermediate code cannot
be directly executed on a general
purpose processor.

A signal from an external source that
causes the processor to stop execution
ot the current task, save current task
status, and begin executing a system
service routine or another user task.

A processor defined variable which
limits interrupt levels.

A hardware clock which generates an
interrupt after a specified period of
time has elapsed.

See File Slot.

An Indexed Sequential Access Method for
finding records Kithin a file by means
of a number or key in a separate file
index.

The most basic portion ot an operating
system, usually supporting only task
scheduling, communication, coordination,
and memory allocation.

A data structure in which each element
contains a pointer to its predecessor or
successor (singly linked) or both
(doubly 1linked).

Interleaving

Interleave Factor

Interpreter

Interrupt

Interrupt Mask

Interval Timer

1/0 Channel

ISAM

Kernel

Linked List

Spomses sms=z2ss ==

POOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-23

(1.4 GLOSSARY continued)

Linker A system software utility that connects Linker
previously assembled/compiled tasks or
subroutines into a single object module
that can be loaded into memory for
execution.

Loader A system software utility that moves Loader
object code from secondary storage into
memory, performing relocation as

required.
Logical A reference to an 1/0 device by name or Logical Device
Device number wWithout reqard to the exact

nature of the I/0 device.

Ma1 1box A system data structure that handles Mai 1box
task communication through global memory
buffers.
Memory Bit PDOS uses a memory bit map for memory Memory Bit Map
Map allocation and deallocation in 1k or 4k

byte increments. See Bit Map.

Memory A method of implementing system I/0 Memory Mapped
Mapped through memory locations.
Moni tor A monitor is a set of resident Moni tor

utilities for handling the most common
commands of the operating system.

Multi-tasking The ability of an operating system to Multi-tasking
permit multiple tasks to run
concurrently.

Multi-user The ability of an operating system to Multi-user

multi-task and allon multiple users
comp lete system access.

Non- A scheduling algorithm where a task Non-preemptive Scheduling
preemptive does not stop executing until it is
Scheduling complete.

Object Code The output of an assembler or compiler Object Code
that can be loaded and executed on the
target processor.

Open A system service which allocates a file Open
or resource to a task.

T
SZESSSSs=sss==ss=s

PDOS 2.4 DOCUMENTATION

CHAPTER 1 INTRODUCTION

PAGE 1-24

e

(1.4 GLOSSARY continued)

Operating
System

Overhead

Overlay

Page

Parameter
List

Phantom
Port

Physical
Device

Position
Independent
Code

Preemptive
Scheduling

Program
Counter

A collection of system software that
permits user written tasks to interface
to the machine hardWare and interact
With other tasks in a straightforward,
efficient, and safe manner.

The amount of processing time required
by the operating system to perform
housekeeping such as paging, SwWapping,
and scheduling. Or, the amount of memory
required by the operating system to
maintain tasks.

A technique used to execute programs
Which are larger than the available
memory size in systems Without paging or
segmentation capabilities.

An indivisible segment of memory which
tacilitates memory management.

A parameter list refers to parameters
following a command.

A user port that has no physical device
associated with it.

A physical device is a hardware unit
such as a disk or tape drive. The
operating system binds a physical device
to a logical device. User routines
reference logical devices rather than
physical devices.

Executable code which runs independent
of the physical memory location at which
it is loaded.

A scheduling . .technique where task
scheduling 1is independent of task
completion. Round-robin swapping or
high priority tasks can interrupt task
execution at any time.

A register wWithin the processing
element ot a computer that contains the
address of the next instruction to be
executed. It s automatically
incremented by the processor and
modified by transfer instructions.

Operating System

Overhead

Overlay

Page

Parameter List

Phantom Port

Physical Device

Position Independent Code

Preemptive Scheduling

Program Counter

PDOS 2.4 DOCUMENTATION

CHAPTER 1 INTRODUCTION

PAGE 1-25

(1.4 GLOSSARY continued)

Queue

Random Access

Real Time

Real Time
Clock

Record

Reentrant
Code

Resource

Response Time

Retry

Roll in/
Roll out

ROMable Code

A data structure 1in which the first
element in is the first element out.

A type of file access in which data may
be accessed in a random manner,
regardiess of its position wWithin the
file.

A type of operating system that
supports online equipment having
critical time constraints. Events must
be handled promptly (i.e., within set
timing limits).

A system clock that indicates actual
elapsed time from some reference time.

A set of data elements that are
logically accessed together.

Code that may be executed
simultaneously by more than one task.
The code cannot be self-modifying and
each task must maintain its own data
area.

Assets ot a computer system that the
operating system uses and/or allocates
to tasks for their use. These include
memory, disk storage, printers, and
terminals, as well as processors.

The elapsed time from the entry of a
command until its acknonledgement or
completion.

An attempt to provide automatic error
recovery by executing the failed
operation a second time.

Roll in / Roll out functions refer to
moving buffers or tasks to and from
secondary storage when limited resources
are available.

Object code that is not self-modifying
and uses workspace external to the code.

Random Access

Real Time

Real Time Clock

Record

Reentrant Code

Resource

Response Time

Retry

Rol11 in/Roll out

ROMable Code

PDOS 2.4 DOCUMENTATION CHAPTER- 1 INTRODUCTION PAGE 1-26

RaEnkistadbilisnni e e

(1.4 GLOSSARY continued)

Round-Robin

Scheduling

Scheduler

Sector

Sector Bit
Mep

A scheduling method where tasks in the
Task List are executed in order, and
entries into the list are always put at
the end. Each task is given a-time
limit for execution and executes the
full time unless blocked or a swap call
is made to the operating systenm.

A system service that determines which
task wWithin the system should be run
next.

The smallest contiguous storage area on
a secondary storage medium. PDOS uses
256 byte logical sectors.

PDOS uses a sector bit map on each
secondary storage unit to allocate and
deallocate logical sectors. See Bit

Map.

Round-Robin Scheduling

Scheduler

Sector

Sector Bit Map

Sector Buffer A buffer associated with a file slot Sector Buffer
for 1/0 transfers to and from secondary
storage.
Semaphore A “gating" variable that 1is used to Semaphore
synchronize task operations on shared
data.
Sequential A type of file access where data may Sequential File Access

File Access

Soft Error

Source Code

Spakn

Static
Priority

only be read or Written sequentially,
one record at a time.

A dynamic error normally caused by some
transient condition. Retrying the
tfailed operation often results in
successtul completion.

Source code is ASCII text which is
passed through a compiler or assembler
to produce object code.

The spawn process generates a new task
or entity. The new task is referred to
as the spawnned task.

A task's execution priority is fixed
either when the task 1is loaded or at
time of system generation.

Soft Error

Source Code

Spann

Static Priority

PDOS 2.4 DOCUMENTATION

——

CHAPTER 1 INTRODUCTION

PAGE 1-27

(1.4 GLOSSARY continued)

Status
Register

Suspended

Swapping

Synchron-
ization

System
Generation

System

Service
P

System
Software

System
Support

Target
Machine

Task Control
Block

Task List

r

A processor register containing the
current executing conditions.

A task state in which task execution is
discontinued pending the occurrence of
an event.

The movement from one task to the next
via the scheduler.

The process of coordinating the
execution of tasks within an operating
system.

The process of generating, linking, and
loading all required system modules
together in order to build a neW
operating system or to update tables in
an existing system.

Functions such as timekeeping, memory
allocation, and console 1/0 that the
operating system performs for user tasks

upon request.

Software that is 1intimately associated
With the operating system.

Functions or utilities such as language
translators, debugging tools,
diagnostics, and libraries which enable
a system user or programmer to write and
test tasks in an efficient manner.

The final machine on which a program 1is
run.

A Task Control Block is a block of
memory containing the information needed
by the operating system to schedule,
suspend, and support & task. This
includes workspace areas, buffers, port
assignments, and other information
necessary for the operating system to be
reentrant.

A system data structure containing 2
list of tasks within the system. This
information includes the minimal amount
ot data required to suspend and resume
task execution.

Status Register

Suspended

Swapping

Synchronization

System Generation

System Service

System Software

System Support

Target Machine

Task Control Block

Task List

PDOS 2.4 DOCUMENTATION

CHAPTER 1 INTRODUCTION

PAGE 1-28

(1.4 GLOSSARY continued)

Task Lock

Task State

Throughput

Time Slice

Trace

unit

Utility

Hait

Hakeup

Workspace

The process of locking a task in the
run state such that no other task
executes until an unlock task is done.

The status of a task (i.e., ready,
executing, suspended or undefined).

The quantity of information processed
by @ computer system in a unit time.

The smallest time quantity available to
the operating system for use in task
scheduling.

A trailing record ‘of . a program's
execution.

A logical gating variable which directs
characters to various output
destinations.

A software program supplied wWith the
operating system which supports program
development.

A system service thatvcases a task to
be suspended for a specified time or
pending the occurrence of an event.

The act of making a task ready to run
atter a period of suspension.

The scratchpad erea used by the central
processor for calculations and temporary
storage.

Task Lock

Task State

Throughput

Time Slice

Trace

Utility

Hait

Wakeup

Workspace

