
/

'~ "' .· . - -~~ ..
'i.

PROGRAMMER'S
REFERENCE

MANUAL

BY=
PAUL R. ROPER

EYRING RESEARCH INSTITUTE INC
1455 west 820 North
Provo, Utah 84601

{801) 375-2434

Pub 1 i shed by
EYRING RESEARCH INSTITUTE, INC.
1455 Nest 820 North
Provo, Utah 84601
(801) 375-2434

PDOS 2.4
PDOS PROGRAMHER·s REFERENCE MANUAL

Hritten by Paul Ross Roper

All rights reserved. No part of this publication
may be reproduced without the prior written
permission of EYRING RESEARCH INSTITUTE, INC.
ERII reserves the right to make changes at any
time in order to improve design and shall not be
responsible for any damages caused by reliance
on the materials presented in this manual.

Please call (801) 375-2434 for more information.

Copyright 1982.

PO 201-1020 REV 0.

=======~===
PDOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-1

===

CHAPTER 1

INTRODUCTION

PODS is a poHerful multi-user, multi-tasking operating
system developed by Eyring Research Institute, Inc., for the
Texas Instruments compatible processor family. Chapter 1 is
intended to give you a flavor of the operating system
environment along Hith a glossary of terms used throughout
this manual.

1. 1 HOH TO USE THIS MANUAL. 1-2

1. 2 POOS SYSTEM ••••..••••••••..•••...••...••••••••••••••• 1-6

1.2.1 PDOS OESCRIPTION ••••••••••••••••••••••••••• 1-5
1.2.2 PDOS FUNCTIONAL DESCRIPTION •••••••••••••••• 1-6

1.3 POOS DEMONSTRATION •..••••••••••••.•..•••••••••••••••• 1-9

1. 4 GLOSSARY •••••••••••••••••••••••••••••.•••••••••••••• 1-17

=====--===========--=--===-~==--==-========================--==
PODS 2.4 DOCUHENTATlON CHAPTER 1 INTRODUCTION PAGE 1-2
===========================--===--===

1.1 HOW TO USE THIS MANUAL

This manual is designed to be a comprehensive introduction
to PODS. It includes instructions for booting, testing, and

trouble shooting the syate11, and covers all monitor
CO!Im8nds, assembly primitives, and utili ties. Examples and
a full demonstration session is also provided. This is
accompanied by an audio cassette demonstration tape to llllke
it even mora usab 1 e.

Each chapter is marked by a tab, Hith a table of contents
for that chapter located at the tab. You may also find, at
SOle tabs, apprapriate summaries of the material in the
chapter. These pages are supplementary to the text itself.
Since they are not I'Uibered, you 11ay remove them from the
binder and use for reference in any Hay convenient to you.

You receive the most benefit fr011 this manual if you first
read through the table of contents for each chapter and then·
quickly scan the entire 11181'\U81 for an overvieH. This MOUld
be followed by a more detailed study of those chapters
pertaining to your systa. The examples to the right of the
text are helpful in clarifing various concepts.

This manual is organized in a tap down manner: more general
and less complex materiel is covered first. Specific
chapter contents are as follOHS:

Chapter 1 is an introduction to a POOS system.

Chapter 2 deals Hith system installation and start up

procedures. This includes explanations on various hardHare
components likely to be found in a PODS system.

Chapter 3 describes in detail the POOS operation systu:
kernel, file manager, 1100itor, and floating point module.

Chapter 4 describes the 1100itor cotllllands.

Chapter 5 examines the assembly primitives of the POOS
kerne 1 and f i 1 e manager.

Chapter 6 1 ists the floating point XOP' s and how they are
used.

Chapter 7 shoHs hOH to use and created PDOS 1/0 drivers
Hhich are an extension of the file system.

Chapter 8 gives 8 very detailed description Of hOH to add

neH secondary storage devices to the POOS boot EPROHs.

This manual

Tabs

Supplementary pages

First, scan entire manual

Organization of manual

Introduction

Installation

PODS system

Honitor COIIIIandS

Floating point package

I/O drivers

Secondary storage DSR's

===
PODS 2.4 DDcUHENTATlDN CHAPTER 1 lNTRDOUCTlON PAGE 1-3

=== ,._.
\

(1.1 HOH TO USE THIS MANUAL continued)

Chapter 9 covers PODS BASIC, including a small BASIC primer
and examples of more complex BASIC programs.

Chapter 10 is a reference chapter for all BASIC commands,
functions, and statements.

Chapter 11 is divided into assembler, editor, linker, and
debugger sections.

Chapter 12 describes and gives examples on hoH to take yout'
standalone applications and configure an EPROMable rut1
module.

Chapter 13 finishes Hith detailed descriptions of the more
common PODS utilities.

rhe appendices give detailed descriptions of PODS errors,
driver listings, and command summaries.

This manual is Hritten in tHo columns. The left hand
column functions much as does the text of any book. The
right hand column functions as an outline of the material in
the left hand column plus addition examples and
explanations. Use it for quick reference to specific
toplCS.

A reply card i:; also included for your use. Hhile He have
done our best to make this manual error free, He knoH that
there Hill be mistakes, and HOuld appreciate your help in
making the next edition better than the current one. Please
let us knoH any major mistakes or suggestions for chapters
that need expansion.

rhis manual assumes a moderate amount of computer hardHare
and softHare knoHledge on your part. It also assumes
familiarity tor the TH99D board line and the THS 9900
microprocessor. Such information is available in one or
more of the folloHing references:

Cannon, Don L. 1g8z. FUNDAMENTALS OF MICRDCOMPUTER DESIGN
- SYSTEM HARDHARE AND SOFTHARE. Dallas, Texas: Texas
Instruments.

rexas Instruments Inc. 1979. INTRODUCTION TO
MICROPROCESSORS - HAROHARE AND SOFTHARE. Houston, Texas:
Texas Instruments.

,.... Texas Instruments Inc. 1981. TMg9Q/101HA MICRDCOMPUTER
USER'S GUIDE. Houston, Texas: Texas Instruments.

Texas .Instruments Inc. 1981. TH990 MlCROCOHPUTER CATALOG.
Houston, Texas: rexas Instruments.

PODS BASIC

PODS BASIC command summary

Assembler, editor, linker, debugger

Run module

Utilities

Appendices

Quick reference

Reply card

Further reference

===
PODS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-4
===

(1.1 HOH TO USE THIS MANUAL continued)

rexas Instruments Inc. 1978. TH990 POHER BASIC REFERENCE
MANUAL. Houston, Texas: Texas Instruments.

fexas Instruments Inc. 1978. TMS 9900 MICROPROCESSOR DATA
MANUAL. Houston, Texas: Texas Instruments.

Zarrel"la, John. 1981. MICROPROCESSOR OPERATING SYSTEMS.
Suisun City, California: Microcomputer applications.

NOTATION

Hexadecimal number. (e.g., >1FFF =
decimal 8191.)

Binary number. (e.g.,
XOD011111111111111 = decimal 8191.)

< > Parameter used Hith a PODS command or
pr1mitive. (e.g., DL <file name>
indicates that the DL command requires a
t i 1 e name as a pat·ameter.)

{) Optional. (e.g., SA <tile name>
{,<attributes>} indicates that the
parameter <attributes> is optional.)

(Rx) .Indirect addressing. (e.g., (R2) =
Buffer refers to register R2 pointing to
a buffer.)

(9ntrol character. (e.g., AC denotes a
hexadecimal >03 character.)

===
PDOS 2.4 DOCUHENTATlON ~TER 1 INTRODUCTION PAGE 1-5

=========--==

1. 2 PDOS SYSTEM

- Real-ti.e, multi-user, multi-tasking

-Prioritized, round-robin scheduling

- Intertask communication and synchronization

- Paged or mapped extended memory modes

-Sequential, random, and shared tile management

- HardHere independence

- 9900 layered design

- to.plete floating point support

- Contigurable, modular, ROHable standalone support·

1.2.1 PDOS DESCRIPTION

POOS is a poHertul multi-user, multi-tasking operating
systea developed by Eyring Research Institute, Inc., tor the
Texas Instruments compatible processor family. You use PDOS
to design and develop scientific, educational, industrial,
and business applications.

PDOS consists ot a small, real-time, multi-tasking kernel
layered by tile management, floating point, and user monitor
modules. The 2K byte kernel provides synchronization and

control of events occurring in a real-time environment using
semaphores, events, messages, mailboxes, and suspension
pr1m1tives. All user console I/0 as Hell as other useful
conversion and housekeeping routines are included in the
PDOS kerne 1 •

The tile management modUle supports named tiles Hith
sequential, random, and shared access. Mass storage device
independence is achieved through read and Hrite logical
sector priMitives. The designer is relieved of real-time
and task management prob 1 ems as He 11 as user conso 1 e
interaction and tile manipulation so that efforts are
concentrated on the app I i cation.

Assellb I y I anguage t 1 oat i ng point app I i cations are no 1 onger
a problem. Conversion modules, assembler directives, and
operating system calls alloH easy integration ot floating
point operatlons into your application programs.

Multi-user, multi-tasking

USER APPLICATION

:---------------------------------:
I BASIC I HONITOR I
:----------------+----------------:
I FILE MANAGER I FLOATING POINT l
J----------------·----------------1
l PDOS KERNEL I

File management module

Floating point development

===--======--===
PODS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-6

==----===

(1.2.1 PODS DESCRIPTION continued)

PODS is easily configured tor any combination ot large or
small floppy disks, bubble memory devices, or Hinchester
mass storage devices. A Hide var1ety ot target system
configurations are supported for test development of
memory-efficient, cost-effective end products.

1.2.2 PDOS FUNCTIONAL DESCRIPTION

PODS KERNEL. PODS 1s Hritten in 9900 assembly language for
test, efficient execution. The small kernel provides
mult1-tasking, real-time clock, event processing, end memory
management functions. Ready tasks are scheduled using a
prloritized round-robin method. Three XOP vectors are used
to interface over 75 system primitives to a user task. ,

MULTI-TASKING EXECUTION ENVIRONMENT. Tasks are the
components comprising a real-time application. Each task is
an lndependent program that shares the processor Hith other
tasks in the system. rasks provide a mechanism that alloHS
a complicated application to be subdivided into several
1ndependent, understandable, and manageable modules.
Real-time, concurrent tasks are allocated in 1K byte
1ncrements.

lNTERTASK COMMUNICATION and SYNCHRONIZATION. Semaphores
and events prov1de a loH overhead facility tor one task to
s1gnal another. Events 1nd1cate ava1lability of a shared
resource, timing pulses, or the occurrence of a hardHare or
sottHare interrupt. Messages and mailboxes are used in
conJunction Hith system lock, unlock, suspend, and event
pr1mitives.

MEMORY REQUIREMENTS. PODS is very memory efficient. The
PODS kernel, floating point module, tile manager, and user
mon1tor utilities require only 8K bytes of memory plus an
additional 4K bytes tor system buffers and stacks. Host
applications are both developed and implemented on the
target system. Further memory reduction is achieved by
linking the user application to a 2K byte PDOS kernel for a
small, ROHable, standalone, multi-tasking module. A fast,
6K byte scientific oriented BASIC interpreter Hith real-time
pnmitives prov1des interactive high level language support
as Hell. For large system configurations, PODS effectively
addresses up to a Megabyte of memory in either paged or
memory mapped mode.

·secondary storage

PODS kernel

Multi-tasking execution environment

!ntertask communication and synchronization

Memory requirements

.~ I .

===
PDOS 2. 4 DOCUMENT A TlON CHAPTER 1 INTRODUCTION PAGE 1-7

===

(1.2.2 PODS FUNCTIONAL DESCRIPTION continued)

FILE MANAGEMENT. The POOS tile management module provides
sequential, random, read only, and shared access to named
tiles on a secondary storage dev1ce. These lOH overhead
tile pr1mitives use a linked, random access file structure
and a logical sector b1t map tor allocation of secondary
storage. No tile compaction 1s ever requ1red. Files are
time stamped Hith date ot creation and last update. Up to
32 files can be s1multaneously opened. Complete device
independence is achieved through read and Hrite logical
sector primit1ves. Supported dev1ces include floppies,
bubble and battery oack-up memor1es, Winchester disks, and
stream1ng tape dr1ves.

COMMAND LINE INTERPRETER. rhe POOS monitor calls the
command l1ne 1nterpreter. fhe CLI parses the command line
tor multiple commands and parameters. Utilities such as
append, define, delete, copy, rename, and shoH file are
res1dent and execute Hithout destroying current memory
programs. Other tunctions 1n the PODS monitor include
sett1ng the baud rate ot a port; checksumming memory;
creat1ng taSks; l1sting tasKs, tiles and open tile status;

,~ asking tor help; sett1ng tile level, file attributes,
1nterrupt mask, and system disk; and directing console
output.

INTERRUPT MANAGEMENT. The PODS kernel handles user
console, system clock, and other designated hardHare
1nterrupts. User consoles are interrupt driven Hith
cnaracter type anead. A task can be suspended pending a
hardHare or sottHare event. POOS sHitches control to a task
suspended on an external event Hithin 500 microseconds after
the occurrence ot the event (provided the system mask is
high enough.) OtherHise, a prioritized, round-robin
scheduling of ready tasks occurs on a millisecond intervals.

PORTABILITY. SottHare secur1ty ex1sts throughout the 9900
prodUct tamily (including 9940, 9980, 9995, and 99000).
PODS supports all fM990 products trom rexas Instruments and
Eyr1ng Research Institute Inc., in addition to an expanding
l1st ot STO TMS9995 boards.

File management

Command Line Interpreter

Interrupt management

Portability

====--=--==--=~ ---======================================- :======--=·=·-~====~=================--========================

POOS 2.4 DOCUMENTATION CHAPTER 1 lNTROOUCTlON PAGE 1-8

=========--============------=============================~---- -==================================--===================

(1.2.2 PODS FUNCTIONAL DESCRIPTION continued)

CUSTOHER SUPPORT. Nuerous support utilities including
v1 rtua I screen editor, assetnb 1 er, 1 i nker, macroprocessor,
EPROHing, disk diagnostics and recovery, and disk cataloging
are standard. Single steppmg, multiple break points,

1e10ry snap shots debugger, task save and restore commands,
and error trapp1ng pr1m1twes 1n all high level languages
are all prov1ded to aid in program debugg1ng. Free upgrades
are ava1lable with hotline serv1ce to system developers. An
optional model! serv1ce is prov1ded tor test access to new
prOdUCts.

Cust011er support

===~===
PODS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-9

===

~.3 PDOS DEMONSTRATION

fhis sect1on g1ves you a sample PODS keyboard session. It
1s not intended as a start up procedure tor new users, but
rather, to g1ve the tlavor ot the PODS operating system
env1ronment.

All entr1es are term1nated by a carr1age return <CR> unless
otherHlse spec1 tied. Your entnes are a 11 underlined and
1nd1cated on tnose l1nes H1tn a rignt bracKet (>) in the
lett column.

rerm1nal sess1on

> <CR>
*PDOS BOOT R2.4
0-99=8001
"IOO=HEHORY TEST
101=1AC
"102=8001
103=MAKE 8001
104=AUX

) ?100.57274 •.••••••••••

> <RESTART.B><CR>
*PODS 8001 R2.4
0-99=8001
'IOO=HEHORY TES1
'101=1AC
'102=8001
'I03=HAKE 8001
·t04=AUX

> ?<CR>
BOOTED!

> <CR>
POOS/101 R2.4
ERII, COPYRIGHT 1982
OATE=HN,OY,YR 7,8,82
TIHE=HR,HN,SC 10,30

Comments

Beg1n execution ot the PODS boot
program via the RESTART.B vector
at memory address >FFFC. A carr1age
return <CR> automatically sets your
console port to the correct baud rate.

System memory from >0000 to >DFBB is
tested by Hriting and verifying random
numbers throughout memory. A period
indicates a complete memory pass Hithout
error.

The RESTART.B vector must be used to
stop the memory test.

A <CR> selects a boot from the main disk.

The PDOS banner prompts for date and time.
1erminate all entr1es Hith a <CR> un'less
otherHise specified. Date and time numbers
can be separated by commas or spaces.
Seconds are optional.

============~================================~=============================~===
PDOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-1D
==--==

(1.3 PDOS DEMONSTRATION continued)

) .u
TASK PAGE TIME TB HS PC SR BH EM CRU PORT

*0/0 (J

> .HE Ll
3 >6020 >6'19A >0828 >1005 >6000 >EOOO >0080 >0001

List TaSk head1ngs explanation:
TASK Task # I spaHned task #, current = '*'

PAGE CRU memory page number
riME
TB

Tics in CPU queue or suspens1on event
TasK control block po1nter

HS HorKspace po1nter
PC Program counter
SR Status reg1ster
BH
EM
CRU
PORT

> .HE POOS

Beg1nn1ng ot task memory
End ot tasK memory
Task output port CRU base
Task input port number

POOS resident commands are:

AF - Append fi ·le
BP - Baud port
CF - Capy file
CS - Checksum
Cl - treate tasK·
OF - Def1ne fi ·le
DL - Delete file
EV - Set/Reset event
EX - POOS Bas1c
FS -File slots
GO - Execute
HE - Help
10 - !nit date
1M - Interrupt mask
Kl - Ki 11 task

> .OFOSSOFK
POOS ERR 53
).~

File Not [Jefmed

LM - Availab·le memory
LS- L1st d1rectory
L1 - L1st tasks
LV - Directory level
RC. - Reset conso"le
RN- Rename file
RS - Reset disk
Rl - Restore task
SA - Set attributes
SF - ShoH file
SP - 01sK space
51 - Save task
SU - Set spool unit
SY - System disk
UN - Set output unit

'LT' lists the currently executing tasks.

The 'HE LT' command explains the 'LT'
parameters. Notice that task memory
begins at >6000 and ends at >EOOO. lhe
task input port is console port #1 and
task output is at CRU base >0080.

Hhen the system first boots, only your task
is executing, namely the system task (0).

The 'HE' command is non-destructive (Hon't
affect any current programs) and is used
to get explanations of PDOS commands,
utilities, and error messages.

Current PODS commands are listed.

PODS errors range from 50 to 99.

Error descriptions are listed by 'HE'
folloHed by the error number.

===
POOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-11
===

(1.3 PODS DEMONSTRATION continued)

> .LV
LEVEL=·J

) .g
OlSK=4

> .SP
FREE='I185 I '1022
USED=6753/6842

> .CS.RS.LH
. RS.LM
• LM
FREE=O

-~
>0000 >0000 >0000 >0000 >0000 >0000 >0000 >FFFF

> .LS
DISK=HINCH #4/4
LEV NAHE:EXT rYPE SIZE DATE CREATED

1 ALOAD SY 8/8 10:14 D7/02/82
1 ASH SY 52/52 10:14 07/02/82
1 BACKUP SY 6/6 10:14 07/02/82
1 BFIX SY 11/11 10:14 07/02/82
1 BURN302 SY 19/19 10:14 07/02/82
1 BURNP SY 9/g 10:14 07/02/82
1 COMP EX 19/19 10:14 07/02/82
1 OOHAP SY 9/9 10:14 07/02/82
1 OOUHP SY 717 10: 14 07/02/82

F!LES=248/512
LAST UPDATE

10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02/82
10:14 07/02182
10:14 07/02/82
1D:14 07/02/82

PODS supports 256 directory levels for each
disk number. Current level is 1.

The SY command lists the current disk number.
POOS supports up to 128 different logical
disk numbers. Each disk number has its own
directory and sector allocation bit map.
Each disk number corresponds to some physical
secondary storage device such as a disk or
tape drive.

The SP command lists the current disk's
FREE and USED sectors. Each sector corres
ponds to 256 bytes of data.

Multiple commands are entered on the same
line by separating commands Hith periods •
Parameters are separated by commas .
The command l1ne echoes again tor each neH
command.

Events are used tor task synchronization.
Each event is a single bit. The system
events (96-127) are set.

The directory of any disk is listed to your
console by the 'LS' command. The current
disk and directory level are used if not
specified in the command list. Each file
is time stamped Hith date of creation and
date of last update. The tile size shoHs
the number of sectors actually used versus
the number ot sectors allocated to the
file from the sector bit map. Hitting any
key gives a pause in the listing.
Hitting another key continues the listing.
The <escape> key terminates the output.

===
POOS 2.4 DOCUMENTATION CHAPTER 1 lNTRODUCTlON PAGE 1-12
==~==

(1.3 PODS DEMONSTRATION continued)

> .HE FILES
Valid file types are as follOHS:

AC =Procedure tile
DB = 9900 ObJect file
SY = System i'1'1e
TX =ASCII text file
BN = Binary file
EX = BASlt program
BX = BASIC b1nary program
UO = User defmed fi'le

> .LS ~/4
OISI<=HINCH #4/4
LEV NAHE:EXT

0 $LPT
0 $TTA
0 $TTO
0 $TTS
10 AOUHP:SR
6 ADV:DAT
6 ADVENT
1 ALOAD
2 ALOAO:SR
10 ART:SR
1 ASH

TYPE

BN
BN
BN
BN
TX
BN C
SY
SY
TX
TX
SY

C = C.ont1guous
• = Delete protect

•• = Hrite protect

SIZE DATE CREATED

1/1 10:13 07/02/82
1/1 10:13 07/0Z/82
1/1 10:13 07102182
1/1 10: 13 07/02/82

10/10 10:09 07/02/82
206/206 10:25 07/02/82
68/68 10:26 07/0Z/82
8/8 10: 14 07/02/82

43/43 10:17 07/02/82
23123 10:06 07102182
52/52 10:14 07102182

F1LES=248/512
LAST UPDATE

10:13 07/02182
10:13 07102182
10:13 07/02/82
10:13 07/02/82
10:09 07/02/82
10:26 07/02/82
10:26 07/02182
10:14 07/02/82
10:17 07/02/82
10:06 07/02/82
10:14 07/02/82

The PODS monitor uses the file type in
controlling file processing. A file typed
as 'OB' contains TI tagged object and is
relocatably loaded into task memory and
executed; similarly Hith 'SY' files. 'EX'
files are directed to the resident BASIC
interpreter, loaded and and executed.

All files on disk number 4 (use your OHn disk
number) are listed by the 'LS ~/4' command.
The name of the disk listed here is 'HINCH #4'.
The current number of f i 1 es in the disk
directory and the directory size are
also listed on the same line.

,..
\

===
PODS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-13
===

(1.3 POOS DEMONSTRATION cont1nued)

> .SF UPTIME

100
1'10
120
130
140
150
160
200
210
220
230
240
250
260
300
3'10
320
330
340
350
360
370
380
390
400

REH UPTIME
DIH D(1].H[2),T('I),H[2]
DATE $0[0]: TIME $T[O]: T=TlC 0
H=$D[O): D=$0[0;4): Y=$D[0;7]: t='l9
H1=H-2: IF H'l<1: H1=H1+12: Y=Y-1: IF Y<O: C=C-1
H=INT[2.&*H1-0.19]+D+YtiNT[Y/4]-2*CtiNT[C/4]
H=INT[H-INT(H/7)*7+0.5]: IF H<O: H=Ht7
RESTORE H+1: READ $H(O)
DATA "Sunday","Monday","luesday","Hednesday"
OAlA "lhursday","Friday","Saturday"
RESTORE H: READ $H[O)
DATA "January","February","Harch","April"
DATA "May", "June", "July", "August", "September"
DAlA "October","November","Oecember"
PRINT "loday is ";$H[O];", ";$H[O];D;",";C*100+Y;
PRINl ". lhe time 1s ";$T[O);"."
DAY=INT[l/10900000): T=T-DAY*10BOOOOO
HRS=INT(l/450000]: T=l-HRS*450000
HIN=INT[T/7500): T=l-HlN*7500
SEC=INl[l/125)
PRINT "PODS has been up for";
IF DAY: PRINT DAY;" days,•;
IF HRS: PRINT HRS; " hours, " ;
IF MIN: PRINT HlN;" minutes, and";
PRINT SEC;" seconds.•;

4'10 BYE
> .J::!PTIHE

Today 1s Hednesday, July l, 1ga2. The time is 10:45:16.
POOS has been up tor 17 minutes, and 55 seconds.

> .HE BP
Format: BP <port>,<rate>{,<base>}

Hhere <port>=1-8 {- sets UNIT 2 base)
<rate>='l10,300 ,600,1200,2400,4800,9600,19200
<base>=neH 9902 CRU base

> .BP 2, 'I200.1M 5
.IH 5

> .CF UPTIHE.STTA

You display a file to your console Hith
the 'SF' or ShoH File command. 'UPTIME'
is an 'EX' or BASIC program.

'UPTIME' is executed by typing the file name.

You change or set port baud rates Hith
the 'BP' command. The range is from 110
to 19200 baud. Each port is initialized
to output only at 1200 baud on poHer up.
If another baud rate is required or the
port is to be used for input, then the
'BP' command must be used.

Port 2 is bauded for input and output at
1200 baud. The CPU interrupt mask is set
high enough (using IH) to allaH character
interrupt inputs tram port 2.

The CF command is used to copy the file

-------------------~

==~==
PODS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-14

===

(1.3 PODS DEMONSTRATION continued)

> .8P 2. 1gzoo

) .CT I '16 .. 2
TASK #4

> .LT
TASK PAGE TIME T8 HS PC SR 8H EM CRU PORT

*0/0 0
4/0 0

3 >6020 >619A >0828 >C005 >6000 >AOOO >0080 >0001
-97 >A020 >A19A >075A >C405 >AOOO >EOOO >0180 >0002

> .LV 99
> .LS

D!SK=HINCH #4/4
LEV NAME:EXT

> .OF OEHOF.10
> .LS

TYPE SIZE DATE CREATED
FILES=248/612
LAST UPDATE

You can change port baud rates at any time.

A neH task (or user) is created by the
'CT' command. The task number is assigned
by PODS. The neH task is 16K bytes in size
and is assigned as task number 4. Port 2
is used for any task I/0.

A summary of the current tasks is listed
by the 'LT' command. Since there is no
free memory available, memory for the neH
task is taken from the spaHning task's
memory. The task time lists as '-97'
because the task 1s asleep pend1ng an
input character from port 2.

Directory level g9 is selected.

A contiguous tile named 'DEHOF' is created.
len sectors are initially allocated.

OISK=HlNCH #4/4
LEV NAME:EXT

FILES=24g/512 (This is optional it a non-contiguous
TYPE SIZE DATE CREATED LAST UPDATE

99 OEMOF c 1110 10:45 07/08/82 10:45 07/08/82
> .GCF TEHP.DEMOF
> .LT

TASK PAGE riME TB HS PC SR BM EM CRU PORT

*0/0 0
410 0
5/0 0

> .HE FS

3 >6020 >619A >0828 >C005 >6000 >9COO >0080 >0001
-g7 >A020 >A1gA >075A >C405 >AOOO >EOOO >0180 >0002
1 >9C20 >90DA >FFCC >9005 >9COO >AOOO >0000 >0000

Fi ·1e Slot usage explanat1on:
SLOl fi ·1e slot #
NAME File name/disk#
ST file status
SH Current sector 1n memory
PT Current fi ·le pointer
SI Sector index of SH
SE Sector index of EOf sector
BE # of bytes in EOf sector
TN lask number Hhich opened file
Bf Butter pomter
LF LOCk flag

file is acceptable.)

Another Hay to create a task is Hith the
·~· command. lf the command line is
preceded by '@', then a neH task is created
defaulting to 1K of memory and no console
port assignment (phantom port). The neH
task copies, in background, the file
'TEMP' into 'OEMOF'. The task automatically
kills itself Hhen completed since it has
no input port.

The current files open under PODS are
monitored by the 'FS' command. The file
name along Hith assigned file slot number
and parameters are listed.

~.

===
PODS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-15
===

(1.3 POOS OEHONSTRATION continued)

> .FS
SLOT NAMf ST SH PT SI SE BE TN BF LF

1 rEMP/4
32 OEHOF/4

>UA04 >11BO >2510 >0009 >001A >0060 >0005 >2410 >0000
>4104 >1874 >2614 >0009 >0036 >0030 >0005 >2610 >0000

> .EDIT
EDll R2.3x

> *!START XPHC ;OUTPUT MESSAGE
> . DATA HES01

XEXT ·EXIT BACK TO PDOS
> !.
> MES01 BYT~ >OA.>DO ;CRLF

rEXT · IT HORKS ' ' ·
BYTE 0

> __ _..,.~E:I.lNDi!it.->~Si.WTAo:;Ru,T
>.U
) *In

START XPHC
DATA HES01

XEXT

HES01 BYTE >OA,>OO

;OUTPUT MESSAGE

;EXIT BACK TO PDOS

;CRLF
TEXT 'IT HORKS!!'
BYTE 0
END START

> *GOOEHOFPGOSH$$
> .ASH DEHOF.#DEHOF:OBJ.#LIST

ASH R2.4
SRCE=DEHOF
OBJ=f!DEHOF:OBJ
LlST=#LlST
ERR=
XREF=

END OF PASS 1
0 DIAGNOSTICS
END OF PASS 2
0 DIAGNOSTICS

Assembly language development is very
easy. Since it is hard to demonstrate
the screen editor on paper, the character
edit is used in this example. The '$' is
echoed Hhen the <escape> character is
entered. This program outputs a message
and then exits back to PDOS.

Notice that the assembler supports all
PODS primitive calls.

The file is nOH ready to be assembled
by the utility 'ASH'. The object is
Hritten to a neH file called 'DEHOF:OBJ'.
The '#' in front of the file name tells
PDOS to define the file if it is not
already defined. A listing of the
assembled program is Hritten to a file
called 'LIST'.

The list file is displayed to your
console Hith the ShOH File 'SF'
command.

===
PODS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-16

===

(1.3 PODS DEMONSTRATION continued)

> .SF LIST ShoH 1 ist fne.
PODS ASH R2.4

PAGE: 1 11:03 07/07/82 FILE: DEHOF,HINCH #4

1 0000: 2F5B
2 0002: 0006'
3 0004: 2FC6
4
6 0006: DADO
6 0008: 4964 2067 4F62

OOOE: 4863 2121
7 0012: 0000
8 0013: OOOD'

START XPHC

*

DATA HES01
XEXT

;OUTPUT MESSAGE

; EXIT BACK TO PODS

HES01 BYTE >OA,>OD ;CRLF
TEXT 'IT HORKS!!'

BYTE 0
END START

PODS ASH R2. 4
PAGE: 2 11:03 07/07/B2 FILE: DEHDF ,HINCH #4

18 SYMBOLS
HES01 R 0006 RO A 0000 R1 A 0001 R10 A OOOA
R11 A OOOB R12 A OOOC R13 A OOOD R14 A OODE
R16 A OODF R2 A 0002 R3 A 0003 R4 A 0004
R5 A 0005 R6 A 0006 R7 A 0007 RS A 0008
R9 A 0009 START R 0000

> .SA DEHOF.TX
> .LS

DISK=HINCH #4/4

The file attributes are automatically set
by the assembler on the object file. The

FILES=Z60/612 source file, hoHever, requires the 'SA'
LEV NAHE:EXT TYPE SIZE DATE CREATED LAST UPDATE command to set the text attributes (TX).

99 OEMOF
99 OEHOF:OBJ

> .OEHOF:OSJ

TX C
DB

1/10
1/1

10:46 07/08/82 10:46 07/08/B2
10:46 07/08/82 10:46 07/08/82

IT HORKS!!
> .LT

TASK PAGE TIME TB HS PC SR BH EH CRU PORT

*0/0 0
4/0 0

> .KT 4
> .LT

3 >6020 >619A >0828 >COOS >6000 >AOOO >0080 >0001
-97 >A020 >A19A >076A >C405 >AOOO >EOOO >0180 >0002

TASK PAGE TIME TB HS PC SR BH EH CRU PORT

*0/0 0 3 >6020 >619A >0828 >1005 >6000 >EOOO >0080 >0001

Finally, you execute the neH program
by entering the file name.

You terminate a task Hith the 'KT' command.

~.

===
PODS 2. 4 DOCUMENT A TlON CHAPTER 1 lNTRODUCTlON PAGE 1-17
=========;===

1.4 GLOSSARY

ASCI! Literal ASCII literals create special

Assembler

Auto Baud

Bit Hap

Blocked

Butter

characters within strings that normally
cannot be represented by a single
printable character. An ASCll literal
is composed of two hex characters within
angle brackets.

A language translator that translates
ASCII text into machine code. The input
language translates one text line into a
single machine instruction.

Auto bauding is a technique used to set
a port baud rate by timing the character
length using a software program. A
single character of a known bit pattern
is used.

A data structure utilized by PODS tor
both memory and tile space allocation.
A single bit in the memory bit map is
associated with each block of memory in
the system. Likewise, each sector on a
logical disk device is associated with a
single bit in the sector bit map on the
disk header. A 'one' indicates the
corresponding sector is allocated, and a
'zero' indicates that the corresponding
sector is free.

Another term tor the suspended task
state.

A temporary block of memory, usually
used tor message and l/0 transfers.

Command Line The Command Line Interpreter is a small
Interpreter system software module Hhich parses a

1 ine for commands and parameters. The
CLI is called by the PODS monitor.

Compiler

Concurrency

A language trans·lator that translates
the text of a high level language into
assembly or machine code.

Processes or tasks whose
overlaps in time. They
interacting or independent.

execution
may be

ASCll Li tera 1

Assembler

Auto Baud

Bit Hap

Blocked

Buffer

Command Line Interpreter

Compiler

Concurrency

==;==
PODS 2.4 OOCUHENTATION CHAPTER 1 INTROOUCTION PAGE 1-18
===

(1.4 GLOSSARY continued)

Contention

CRC

Create

A situation that occurs Hhen more than
one task vies for a single resource.

An abbreviation for Cyclic Redundancy
Code, an error checking technique that
provides a high degree of error
detection. lt is often used for data
transmission links and disk controllers,
Hhere burst errors are frequent.

A system service that initializes a
structure by entering information such
es its name, size, etc. into system
tables. Specifically, POOS supports
task and file creation.

Critical Code A portion ot sottHare that accesses a
shared resource and must be protected so
that Hhile one task is performing the
access (executing the softHare), no
other task is permitted to access the
same resource. ln most cases, either
interrupts are disabled during the
execution of this code or the task is
locked.

Data Base

Deadlock

Debugger

Device

A large and complete collection of
information that covers a variety of
subject areas.

A situation that occurs Hhen all tasks
Hithin a system are suspended, Haiting
for resources that have already been
assigned to other tasks that are also
waiting for additional resources.

A system softHare utility that aids a
programmer in locating errors in his
sottHare. Functions usually include
breakpoints, single stepping, memory
inspect and change, disassembly, and
assembly.

A unit of peripheral hardHare such as a
printer, terminal, or disk.

Device Driver A system sottHare module that directly
controls the data transfer to and from
an 1/0 peripheral. PDOS device drivers
are an extension of the tile system.

Contention

Cyclic Redundancy Code

Create

Critical Code

Data Base

Deadlock

Debugger

Device

Device Driver

~ ;

==;==
POOS 2.4 DOCUMENTATION CHAPTER 1 lNTRODUCTlON PAGE 1-19
==~==

(1.4 GLOSSARY continued)

Dkectory A data structure containing entries for
each file in the file system of a
storage device. Each directory entry
contains information about the file
name, access rights, size, date of
creation, and last update.

Disk number A disk number is used by PDOS to
reference a disk device. A single
hardHare device may be referenced by
several disk numbers.

DHA

Editor

An 1/0 processor memory access
technique Hhereby the system processor
is placed in a hold state Hhile the 1/0
processor transfers data to or from
memory, independent of the system
processor and usually at the maximum
memory data rate.

A system utility that permits a
programmer to create, modify,
concatenate, or delete portions of files
on a secondary storage device. Editors
operate almost exclusively on text
files. Types of editors include
character, line, and screen editors.

End of File A soft pointer to the end of "knoHn"
data Hithin a tile.

Entry Point The programmer defined address at Hhich
a task begins executing.

Event

Execution
Module

A condition used to synchronize task
execution. An event may have a hardHare
or softHare origin. HardHare events
result from processor interrupts.
SoftHare events are either user or
system defined and are used to
coordinate system tasks or resources.

The Execution Module consists of the
PODS kernel plus other non-file oriented
prlmitives. This object module is
linked Hith user application tasks to
form a ROMable, standalone program for
the target processor. Other execution
modules are also 1 inked in for high
level language support.

Directory

Disk number

Direct Memory Access

Editor

End of File

Entry Point

Event

Execution Module

===
PODS 2.4 DOCUMENTATION CHAPTER 1 lNTRODUCTlON PAGE 1-20

===

(1.4 GLOSSARY continued)

File

Fne

A collection of data, normally stored
on a storage device such as a disk or
tape.

File attributes are file status bits
Attributes indicating the file type, disk storage

method, and protection flags.

File Slot A file slot is a logical l/0 channel
through Hhich data transfers from an
user application to secondary storage or
other liD device. The file slot
maintains tile status, pointers, and
buffers.

File System System sottHare modules that manage
tiles on storage media. Functions
include create, delete, rename, read,
Hrite, position, protect, etc.

File Type File types are attributes used by the
PODS monitor in determining hoH a file
is processed.

First Fit

Foreground/
Background

Format

An algorithm for memory allocation that
searches the free list (bit map) only
long enough to find an unused memory
block that is large enough to satisfy
the memory request.

A condition Hithin a multi-tasking
operating system Hhere critical programs
operate in the foreground and execute
Hlth high priority Hhile background
assemblies, edits, listings, etc., are
also going on at a loHer priority.

A system utility that initializes
storage media Hith information necessary
to assure that data can subsequently be
read or Hritten Hithout error. This
generally entails soft-sectoring disk
tracks Hith address and lO marks Hhich
are detected by the hardHare controller.

Fragmentation A condition Hhere main memory or
secondary storage is segmented due to
dynamic memory allocation and
deallocation.

File

File Attributes

File Slot

Fne System

File Type

First Fit

Foreground/Background

Format

Fragmentation

!~

===
POOS·2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-21

===

(1.4 GLOSSARY continued)

Friendly A softHare environment in Hhich all
Environment softHare is adequately tested and

therefore one task does not interfere
Hith or cause errors in the execution of
another task. The operating system
cannot prevent intertask conflicts.

Garbage A system utility Hhich reallocates or
Collection recovers system resources (such as

fragmented memory) for further use.

Hard Error

High level
Language

An error Hhich is predictable and
repeatable.

A more sophisticated coding language
than assembly language. One high level
instruction generates many machine
instructions. (e.g. FORTRAN, BASIC,
PASCAL, etc.)

Hostile A system softHare environment in Hhich
Environment it is assumed that both hardHare and

sottHare may fail in any Hay, and the
system is required either to continue
running or shut 1tself doHn in an
orderly manner.

In Circuit
Emulation

Index Table

Initialize

A capability provided on many
m1crocomputer development systems that
enables a system des1gner to use the
facilities of the development system to
debug prototype hardHare and softHare.

A table utilized for
Hriting random access
variable record sizes.

reading
tiles

and
Hith

A disk is initialized such that PODS
parameters are ava1lable to the file
manager. These include disk name,
number of directory entries, total
number of sectors available, date of
initialization, density and sides flags,
directory, and sector bit map. Any bad
sectors are deallocated from user
storage.

Friendly Environment

Garbage Collection

Hard Error

High level language

Hostile Environment

In Circuit Emulation

Index Table

Initialize

===~===
PDOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-22
===

(1.4 GLOSSARY continued)

Interleaving A track formatting technique whereby
multiple sectors may be read or written
sequentially with a minimum ot disk
latency. This is possible by placing
logical sectors on a track in such a Hay
that the time required by the system
service routine to process a single
sector is Jess than· the time required
tor the disk to rotate to the start of
the next logical sector.

Interleave
Factor

Interpreter

Interrupt

Interrupt

The number ot physical sectors betHeen
a given sector and the next logical
sector on a disk track.

A language translator that accepts high
level language text and translates this
text into a special intermediate code
that is interpreted by a system program.
Usually this intermediate code cannot
be directly executed on a general
purpose processor.

A signal from an external source that
causes the processor to stop execution
of the current task, save current task
status, and begin executing a system
service routine or another user task.

A processor defined variable which
Hask limits interrupt levels.

Interval
rimer

A hardHare clock Hhich generates an
interrupt after a specified period of
time has elapsed.

1/0 Channel See File Slot.

ISAH An Indexed Sequential Access Method for
finding records Hithin a file by means
of a number or key in a separate tile
index.

Kernel The most basic portion ot an operating
system, usually supporting only task
scheduling, communication, coordination,
and memory allocation.

Linked List A data structure in Hhich each element
contains a po1nter to its predecessor or
successor (singly linked) or both
(doubly linked).

Interleaving

Interleave Factor

Interpreter

Interrupt

Interrupt Mask

Interval Timer

I/0 Channel

ISAH

Kernel

Linked L1st

~
I

~
)

==--==========================~========~======:================
PDOS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-23

=========--===

(1.4 GLOSSARY continued)

Loader

Logical
Device

Ha1lbox

Memory B'it
Hap

Memory
Happed

Monitor

A system softHare utility that connects
previously assembled/compiled ta.sks or
SUbroutines into a single object module
that can be loaded into memory for
execution.

A system softHare utility that moves
object code from secondary storage into
memory, performing relocation as
required.

A reference to an 1/0 device by name or
number Hithout reqard to the exact
nature of the 1/0 device.

A system data structure that handles
task communication through global memory
buffers.

PODS uses a memory bit map for memory
allocation and deallocation in 1k or 4k
byte increments. See Bit Hap.

A method of implementing system 1/0
through memory locations.

A monitor is a set of resident
utilities for handling the most common
commands of the operating system.

Multi-tasking The ability of an operating system to

Multi-user

Non
preemptive
Scheduling

Object Code

Open

permit multiple tasks to run
concurrently.

The ability of an operating system to
multi-task and alloH multiple users
complete system access.

A scheduling algorithm Hhere a task
does not stop executing until it is
complete.

The output of an assembler or compiler
that can be loaded and executed on the
target processor.

A system service Hhich allocates a file
or resource to a task.

Loader

Logical Device

Mailbox

Memory Bit Hap

Memory Happed

Monitor

Multi-tasking

Multi-user

Non-preemptive Scheduling

Object Code

Open

======--=--- --======.=====::==.:::======================:::-:--====-==-=========--=--==========-==========-====--====
PDOS 2.4 DOCUHENTATlON CHAPTER 1: JNTRQDUCTlON PAGE 1-24
=--=========~~========.~=====================~=.;==.=;====---=-==--==========--=====--==--================

(1.4 GLOSSARY continued)

Operating
System

Overlay

Page

Paraneter
List

Phantom
Port

Physical
Device

A collection of system softHare that
permits user Hr'itten tasks to interface
to the machine hardHare and interact
Hith other tasks in a straightforHard,
efficient, and sate manner.

The 8110Unt of processing time requked
by the operating systl!ll to perform
housekeeping such as paging, sHapping,
and sehedul ing. Dr, the ~~t~KU~t of memory
required by the operating system to
uintain tasks.

A technique used to execute programs
HMch are larger than the available
memory size in systems Hithout paging or
segmentation capabilities.

An indivisible segment of memory Hhich
facilitates memory management.

A parameter list refers to parameters
tollOHing a command.

A user port that has no physical device
associated Hith it.

A physical device is a hardHare unit
such as a disk or tape drive. The
operating system binds a physical device
to a logical device. User routines
reference logical devices rather than
physical devices.

PosHion Executable code Hhich runs independent
lndependent of the physical memory location at Hhich
Code it is loaded.

Preeapt1ve
Schedu11ng

Program
Counter

A scheduling , .t~ique Hhere task
scheduling is 'independent of task
completion. Round-robin SHapping or
high priority tasks can interrupt task
execution at any time.

A register Hithin the processing
eleaent of a computer that contains the
address of the next instruction to be
executed. It is automatically
incremented by the processor and
modified by transfer instructions.

Operating Systea

Overlay

Page

Parameter List

Phantom Port

Physical Device

Position Independent Code

Preetlptive Schectlling

Progr• Counter

===--=============================
PODS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-25

i

========--==--=-----=--=====---===============

(1.4 GLOSSARY continued)

Queue A data structure in Hhich the first
element in is the first element out.

Random Access A type of file access in Hhich data may
be accessed in a random manner,
regardless of its position Hithin the
file.

Real Time

Real Time
Clock

Record

Reentrant
Code

Resource

A type of operating system that
supports online equipment having
critical time constraints. Events must
be handled promptly (i.e., Hithin set
timing limits).

A system clock that indicates actual
elapsed time from some reference time.

A set of data elements that are
logically accessed together.

Code that may be executed
simultaneously by more than one task.
The code cannot be self-modifying and
each task must maintain its OHn data
area.

Assets ot a computer system that the
operating system uses and/or allocates
to tasks for their use. These include
memory, disk storage, printers, and
terminals, as Hell as processors.

Response Time The elapsed time from the entry of a
command unt;J its acknoHledgement or
completion.

Retry

Roll in/
Roll out

An attempt to
recovery by

provide automatic error
executing the failed

operation a second time.

Roll in I Roll out functions refer to
moving buffers or tasks to and from
secondary storage Hhen limited resources
are available.

ROHable Code Object code that is not self-modifying
and uses HOrkspace external to the code.

Queue

Random Access

Real Time

Real Time Clock

Record

Reentrant Code

Resource

Response Time

Retry

Roll in/Roll out

ROHable Code

==================================:========================--=====--========================-----==========================
PDOS 2.4 OOCUHENTATION CHAPTER 1 INTRODUCTION PAGE 1-26

==================·=========~====================================---==

(1.4 GLOSSARY continued)

Round-Robin
Scheduling

Scheduler

Sector

Sector Bit
Hap

A scheduling method Hhere tasks· in the
Task Ust are executed in order, and

entries into the list are alHays put at
the end. Each task is given a time
limit tor execution and executes the
full time unless blocked or a sHap call
is made to the operating system.

A system service that determines Hhich
task Hithin the system should be run
next.

The smallest contiguous storage area on
a secondary storage medium. PDOS uses
256 byte logical sectors.

PODS uses a sector bit map on each
secondary storage unit to allocate and
deallocate logical sectors. See Bit
Hap.

Sector Butter A butter associated Hith a tile slot
tor I/0 transfers to and from secondary
storage.

Semaphore

Sequential

A •gating" variable that is used to
synchronize task operations on shared
data.

A type of tile access Hhere data may
File Access only be read or Hritten sequentially,

one record at a time.

Soft Error A dynamic error norma 11 y caused by some
transient condition. Retrying the
failed operation often results in
successful completion.

Source Code Source code is ASCll text Hhich is
passed through a compiler or assembler
to produce object code ..

SpaHn

Stat1c
Priority

The SpaHn process generates a neH task
or entity. The neH task is referred to
as the spaHned task.

A task's execution priority is fixed
e1ther Hhen the task is loaded or at
time of system generation.

Round-Robin Scheduling

Scheduler

Sector

Sector Bit Hap

Sector Buffer

Semaphore

Sequential File Access

Soft Error

Source Code

SpaHn

Static Priority

~
)

~
f
\

======--==--===--===-=~====================
PODS 2.4 DDCUHENTATION CHAPTER 1 INTRODUCTION PAGE 1-27
===--===============

(1.4 GLOSSARY continued)

Status
Register

Suspended

SH8pping

Synchron
ization

A processor register containing the
current executing conditions.

A task state in Hhich task execution is
discontinued pending the occurrence of
an event.

The movement from one task to the next
via the scheduler.

The process
execution of
system.

of coordinating the
tasks Hithin an operating

System The process of generating, linking, and
Generation loading all required system modules

together in order to build a neH
operating system or to update tables in
an ex1sting system.

System
Service

System
SottHare

System
Support

Target

Functions such as timekeeping, memory
allocation, and console I/0 that the
operating system performs for user tasks
upon request.

SoftHare that is intimately associated
Hith the operating system.

Functions or utilities such as language
translators, debugging tools,
diagnostics, and libraries Hhich enable
a system user or programmer to Hrite and
test tasks in an efficient manner.

The final machine on Hhich a program is
Machine run.

Task Control A Task Control Block is a block of
Block memory containing the information needed

by the operating system to schedule,
suspend, and support a task. This
includes Horkspace areas, buffers, port
assignments, and other information
necessary tor the operating system to be

reentrant.

Task List A system data structure containing a
list of tasks Hithin the system. This
information includes the minimal amount
ot data requ1red to suspend and resume
task execution.

Status Register

Suspended

SHapping

Synchronization

System Generation

System Service

System SoftHare

System SUpport

Target Machine

Task Control Block

Task List

=========•===--~~====================~===
PODS 2.4 DOCUMENTATION CHAPTER 1 INTRODUCTION PAGE 1-28
===

(1.4 GLOSSARY continued)

Task Lack

Task State

Throughput

Time Slice

Trace

Unit

Utility

Halt

Hakeup

Horkspace

The process of locking a task in the
run state such that no other task
executes until an unlock task is done.

The status of a task (i.e., ready,
executing, suspended or undefined).

The quantity of information processed
by 'a computer system in a unit time.

The smallest time quantity available to
the operating system for use in task
schedu 1 i ng.

A tran i ng record· 'Of a program's
execution.

A logical gating variable Hhich directs
characters to various output
destinations.

A softHare program supplied Hith the
operating system Hhich supports program
deve 1 opment.

A system service that cases a task to
be suspended for a specified time or
pending the occurrence of an event.

The act of making a task ready to run
after a per1od of suspension.

The scratchpad area used by the central
processor for calculations and temporary
storage.

Task Lock

Task State

Throughput

Time Slice

Trace

Unit

Utility

Hait

Hakeup

Horkspace

·~
I •

